Skip to main content

Advertisement

Log in

Epigenetic Modifications of Nrf2 by 3,3′-diindolylmethane In Vitro in TRAMP C1 Cell Line and In Vivo TRAMP Prostate Tumors

  • Research Article
  • Theme: Natural Products Drug Discovery in Cancer Prevention
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

3,3′-diindolylmethane (DIM) is currently being investigated in many clinical trials including prostate, breast, and cervical cancers and has been shown to possess anticancer effects in several in vivo and in vitro models. Previously, DIM has been reported to possess cancer chemopreventive effects in prostate carcinogenesis in TRAMP mice; however, the in vivo mechanism is unclear. The present study aims to investigate the in vitro and in vivo epigenetics modulation of DIM in TRAMP-C1 cells and in TRAMP mouse model. In vitro study utilizing TRAMP-C1 cells showed that DIM suppressed DNMT expression and reversed CpG methylation status of Nrf2 resulting in enhanced expression of Nrf2 and Nrf2-target gene NQO1. In vivo study, TRAMP mice fed with DIM-supplemented diet showed much lower incidence of tumorigenesis and metastasis than the untreated control group similar to what was reported previously. DIM increased apoptosis, decreased cell proliferation and enhanced Nrf2 and Nrf2-target gene NQO1 expression in prostate tissues. Importantly, immunohistochemical analysis showed that DIM reduced the global CpG 5-methylcytosine methylation. Focusing on one of the early cancer chemopreventive target gene Nrf2, bisulfite genomic sequencing showed that DIM decreased the methylation status of the first five CpGs of the Nrf2 promoter region, corroborating with the results of in vitro TRAMP-C1 cells. In summary, our current study shows that DIM is a potent cancer chemopreventive agent for prostate cancer and epigenetic modifications of the CpG including Nrf2 could be a potential mechanism by which DIM exerts its chemopreventive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  2. Huang J, Plass C, Gerhauser C. Cancer chemoprevention by targeting the epigenome. Curr Drug Targets. 2011;12(13):1925–56.

    Article  PubMed  CAS  Google Scholar 

  3. Nelson WG, De Marzo AM, Yegnasubramanian S. Epigenetic alterations in human prostate cancers. Endocrinology. 2009;150(9):3991–4002.

    Article  PubMed  CAS  Google Scholar 

  4. Pathak SK, Sharma RA, Steward WP, Mellon JK, Griffiths TR, Gescher AJ. Oxidative stress and cyclooxygenase activity in prostate carcinogenesis: targets for chemopreventive strategies. Eur J Cancer. 2005;41(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  5. Barve A, Khor TO, Nair S, Reuhl K, Suh N, Reddy B, et al. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer. 2009;124(7):1693–9.

    Article  PubMed  CAS  Google Scholar 

  6. Frohlich DA, McCabe MT, Arnold RS, Day ML. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene. 2008;27(31):4353–62.

    Article  PubMed  CAS  Google Scholar 

  7. Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal. 2010;13(11):1713–48.

    Article  PubMed  CAS  Google Scholar 

  8. Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with antiinflammatory. Antioxid Redox Signal. 2010;13(11):1679–98.

    Article  PubMed  CAS  Google Scholar 

  9. Barve A, Khor TO, Hao X, Keum YS, Yang CS, Reddy B, et al. Murine prostate cancer inhibition by dietary phytochemicals–curcumin and phenyethylisothiocyanate. Pharm Res. 2008;25(9):2181–9.

    Article  PubMed  CAS  Google Scholar 

  10. Wu TY, Saw CL, Khor TO, Pung D, Boyanapalli SS, Kong AN. In vivo pharmacodynamics of indole-3-carbinol in the inhibition of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: involvement of Nrf2 and cell cycle/apoptosis signaling pathways. Mol Carcinog. 2012;51(10):761–70.

    Google Scholar 

  11. Yu S, Khor TO, Cheung KL, Li W, Wu TY, Huang Y, et al. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One. 2010;5(1):e8579.

    Article  PubMed  Google Scholar 

  12. Huang Y, Khor TO, Shu L, Saw CL, Wu TY, Suh N, et al. A gamma-tocopherol-rich mixture of tocopherols maintains Nrf2 expression in prostate tumors of TRAMP mice via epigenetic inhibition of CpG methylation. J Nutr. 2012;142(5):818–23.

    Article  PubMed  CAS  Google Scholar 

  13. Li Y, Tollefsbol TO. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components. Curr Med Chem. 2010;17(20):2141–51. Epub 2010/04/29.

    Article  PubMed  Google Scholar 

  14. Khor TO, Huang Y, Wu TY, Shu L, Lee J, Kong AN. Pharmacodynamics of curcumin as DNA hypomethylation agent in restoring the expression of Nrf2 via promoter CpGs demethylation. Biochem Pharmacol. 2011;82(9):1073–8. Epub 2011/07/27.

    Article  PubMed  CAS  Google Scholar 

  15. Shu L, Khor TO, Lee JH, Boyanapalli SS, Huang Y, Wu TY, et al. Epigenetic CpG Demethylation of the promoter and reactivation of the expression of Neurog1 by curcumin in prostate LNCaP cells. AAPS J. 2011;13(4):606–14.

    Article  PubMed  CAS  Google Scholar 

  16. Weng JR, Tsai CH, Kulp SK, Chen CS. Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett. 2008;262(2):153–63.

    Article  PubMed  CAS  Google Scholar 

  17. Sarkar FH, Li Y. Indole-3-carbinol and prostate cancer. J Nutr. 2004;134(12 Suppl):3493S–8S.

    PubMed  CAS  Google Scholar 

  18. Banerjee S, Kong D, Wang Z, Bao B, Hillman GG, Sarkar FH. Attenuation of multi-targeted proliferation-linked signaling by 3,3′-diindolylmethane (DIM): from bench to clinic. Mutat Res. 2011;728(1–2):47–66.

    PubMed  CAS  Google Scholar 

  19. Beaver LM, Yu TW, Sokolowski EI, Williams DE, Dashwood RH, Ho E. 3,3′-diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicol Appl Pharmacol. 2012;263(3):345–51.

    Article  PubMed  CAS  Google Scholar 

  20. Wakabayashi N, Slocum SL, Skoko JJ, Shin S, Kensler TW. When NRF2 talks, who’s listening? Antioxid Redox Signal. 2010;13(11):1649–63.

    Article  PubMed  CAS  Google Scholar 

  21. Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res. 1997;57(16):3325–30.

    PubMed  CAS  Google Scholar 

  22. Barve A, Khor TO, Nair S, Lin W, Yu S, Jain MR, et al. Pharmacogenomic profile of soy isoflavone concentrate in the prostate of Nrf2 deficient and wild-type mice. J Pharm Sci. 2008;97(10):4528–45.

    Article  PubMed  CAS  Google Scholar 

  23. Thu KL, Pikor LA, Kennett JY, Alvarez CE, Lam WL. Methylation analysis by DNA immunoprecipitation. J Cell Physiol. 2010;222(3):522–31.

    PubMed  CAS  Google Scholar 

  24. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet. 2005;37(8):853–62.

    Article  PubMed  CAS  Google Scholar 

  25. Cheung HH, Lee TL, Davis AJ, Taft DH, Rennert OM, Chan WY. Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer. Br J Cancer. 2010;102(2):419–27.

    Article  PubMed  CAS  Google Scholar 

  26. Anderton MJ, Manson MM, Verschoyle R, Gescher A, Steward WP, Williams ML, et al. Physiological modeling of formulated and crystalline 3,3′-diindolylmethane pharmacokinetics following oral administration in mice. Drug Metab Dispos. 2004;32(6):632–8.

    Article  PubMed  CAS  Google Scholar 

  27. Reed GA, Sunega JM, Sullivan DK, Gray JC, Mayo MS, Crowell JA, et al. Single-dose pharmacokinetics and tolerability of absorption-enhanced 3,3′-diindolylmethane in healthy subjects. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2619–24.

    Article  PubMed  CAS  Google Scholar 

  28. Khor TO, Yu S, Barve A, Hao X, Hong JL, Lin W, et al. Dietary feeding of dibenzoylmethane inhibits prostate cancer in transgenic adenocarcinoma of the mouse prostate model. Cancer Res. 2009;69(17):7096–102.

    Article  PubMed  Google Scholar 

  29. Park JH, Walls JE, Galvez JJ, Kim M, Abate-Shen C, Shen MM, et al. Prostatic intraepithelial neoplasia in genetically engineered mice. Am J Pathol. 2002;161(2):727–35.

    Article  PubMed  Google Scholar 

  30. Saw CL, Olivo M, Chin WW, Soo KC, Heng PW. Transport of hypericin across chick chorioallantoic membrane and photodynamic therapy vasculature assessment. Biol Pharm Bull. 2005;28(6):1054–60.

    Article  PubMed  CAS  Google Scholar 

  31. Chen ZX, Riggs AD. DNA methylation and demethylation in mammals. J Biol Chem. 2011;286(21):18347–53.

    Article  PubMed  CAS  Google Scholar 

  32. Barve A, Khor TO, Reuhl K, Reddy B, Newmark H, Kong AN. Mixed tocotrienols inhibit prostate carcinogenesis in TRAMP mice. Nutr Cancer. 2010;62(6):789–94.

    Article  PubMed  CAS  Google Scholar 

  33. Taberlay PC, Jones PA. DNA methylation and cancer. Prog Drug Res. 2011;67:1–23.

    PubMed  CAS  Google Scholar 

  34. Kim EJ, Shin M, Park H, Hong JE, Shin HK, Kim J, et al. Oral administration of 3,3′-diindolylmethane inhibits lung metastasis of 4T1 murine mammary carcinoma cells in BALB/c mice. J Nutr. 2009;139(12):2373–9.

    Article  PubMed  CAS  Google Scholar 

  35. Cho HJ, Park SY, Kim EJ, Kim JK, Park JH. 3,3′-diindolylmethane inhibits prostate cancer development in the transgenic adenocarcinoma mouse prostate model. Mol Carcinog. 2011;50(2):100–12.

    Article  PubMed  CAS  Google Scholar 

  36. Fan S, Meng Q, Saha T, Sarkar FH, Rosen EM. Low concentrations of diindolylmethane, a metabolite of indole-3-carbinol, protect against oxidative stress in a BRCA1-dependent manner. Cancer Res. 2009;69(15):6083–91.

    Article  PubMed  CAS  Google Scholar 

  37. Kim YH, Kwon HS, Kim DH, Shin EK, Kang YH, Park JH, et al. 3,3′-diindolylmethane attenuates colonic inflammation and tumorigenesis in mice. Inflamm Bowel Dis. 2009;15(8):1164–73.

    Article  PubMed  Google Scholar 

  38. Chinnakannu K, Chen D, Li Y, Wang Z, Dou QP, Reddy GP, et al. Cell cycle-dependent effects of 3,3′-diindolylmethane on proliferation and apoptosis of prostate cancer cells. J Cell Physiol. 2009;219(1):94–9.

    Article  PubMed  CAS  Google Scholar 

  39. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(1 Suppl):223S–8S.

    PubMed  CAS  Google Scholar 

  40. Degner SC, Papoutsis AJ, Selmin O, Romagnolo DF. Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3′-diindolylmethane in breast cancer cells. J Nutr. 2009;139(1):26–32.

    PubMed  CAS  Google Scholar 

  41. Li Y, Li X, Guo B. Chemopreventive agent 3,3′-diindolylmethane selectively induces proteasomal degradation of class I histone deacetylases. Cancer Res. 2010;70(2):646–54.

    Article  PubMed  CAS  Google Scholar 

  42. Saw CL, Cintron M, Wu TY, Guo Y, Huang Y, Jeong WS, et al. Pharmacodynamics of dietary phytochemical indoles I3C and DIM: induction of Nrf2-mediated phase II drug metabolizing and antioxidant genes and synergism with isothiocyanates. Biopharm Drug Dispos. 2011;32(5):289–300.

    Article  PubMed  CAS  Google Scholar 

  43. Kho MR, Baker DJ, Laayoun A, Smith SS. Stalling of human DNA (cytosine-5) methyltransferase at single-strand conformers from a site of dynamic mutation. J Mol Biol. 1998;275(1):67–79.

    Article  PubMed  CAS  Google Scholar 

  44. Smith SS, Kaplan BE, Sowers LC, Newman EM. Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc Natl Acad Sci U S A. 1992;89(10):4744–8.

    Article  PubMed  CAS  Google Scholar 

  45. Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, et al. De novo CpG island methylation in human cancer cells. Cancer Res. 2006;66(2):682–92.

    Article  PubMed  CAS  Google Scholar 

  46. Shukla V, Coumoul X, Lahusen T, Wang RH, Xu X, Vassilopoulos A, et al. BRCA1 affects global DNA methylation through regulation of DNMT1. Cell Res. 2010;20(11):1201–15.

    Article  PubMed  CAS  Google Scholar 

  47. Gingrich JR, Barrios RJ, Morton RA, Boyce BF, DeMayo FJ, Finegold MJ, et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res. 1996;56(18):4096–102.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Chungxiou Wang as a histopathologist for her assistance in histology evaluation. We also thank Dr. Barbara Foster, Rowell Park Cancer Institute, Buffalo, NY, who generously provided the TRAMP-C1 cells. We thank all members in Dr. Kong’s group for their generous help in discussion and preparation of this manuscript.

Conflict of Interest Statement

None declared

Funding

This work was supported by Institutional Funds to Dr. Ah-Ng Tony Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ah-Ng Tony Kong.

Additional information

Guest Editors: Ah-Ng Tony Kong and Chi Chen

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Immunohistochemical analysis of the effects of cell proliferation, PCNA. Representative photomicrographs (×40 magnification) of PCNA-stained (dark brown color) TRAMP prostate tissue section and percentage levels of cell proliferation. The scale bar stands for 500 μm. p < 0.05, significantly different from the control and was based on Mann–Whitney U test. (JPEG 43 kb)

High-resolution image (TIFF 45,813 kb)

Supplementary Fig. 2

Immunohistochemical analysis of the effects of apoptosis, TUNEL. Representative photomicrographs (×40 magnification) of TUNEL stained (dark brown color) TRAMP prostate tissue section and percentage levels of apoptosis. The scale bar stands for 500 μm. *p < 0.05, significantly different from the control by Mann–Whitney U test. Number sign indicates significantly different between D-G1 and D-G2 (p = 0.043). (JPEG 46 kb)

High-resolution image (TIFF 45,718 kb)

Supplementary Table I

Murine primers for qPCR (DOC 32 kb)

Supplementary Table II

Confirmation of genotype of the TRAMP mice (DOC 28 kb)

Supplementary Table III

DIM inhibit palpable tumor and metastasis in TRAMP males. aNumbers represent the presence of palpable tumor showed at the end of the experiment at 24 weeks of age. Fisher’s exact test was used to compare the incidence of palpable tumor between the control and the DIM-treated mice killed at 24 weeks of age. *p values < 0.05 were considered as significant. bNumbers represent the presence of lymph nodes metastasis showed at the end of experiment when the mice were killed. Fisher’s exact test was used to compare the incidence of lymph node metastasis between the control and the DIM treated mice sacrificed at 24 weeks of age. #p values < 0.05 were considered as significant. (DOC 27 kb)

Supplementary Table IV

TRAMP mice body weights, wet GU weights, and normalized wet GU weights by body weights measured weekly. (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, TY., Khor, T.O., Su, ZY. et al. Epigenetic Modifications of Nrf2 by 3,3′-diindolylmethane In Vitro in TRAMP C1 Cell Line and In Vivo TRAMP Prostate Tumors. AAPS J 15, 864–874 (2013). https://doi.org/10.1208/s12248-013-9493-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-013-9493-3

KEY WORDS

Navigation