The AAPS Journal

, Volume 15, Issue 2, pp 438–446 | Cite as

Animal Models of Osteoarthritis: Challenges of Model Selection and Analysis

  • Erin Teeple
  • Gregory D. Jay
  • Khaled A. Elsaid
  • Braden C. Fleming
Review Article Theme: Human and Veterinary Therapeutics: Interspecies Extrapolations and Shared Challenges


Osteoarthritis (OA) is the most common musculoskeletal disease, affecting millions of individuals worldwide. New treatment approaches require an understanding of the pathophysiology of OA and its biomechanical, inflammatory, genetic, and environmental risk factors. The purpose of animal models of OA is to reproduce the pattern and progression of degenerative damage in a controlled fashion, so that opportunities to monitor and modulate symptoms and disease progression can be identified and new therapies developed. This review discusses the features, strengths, and weaknesses of the common animal models of OA; considerations to be taken when choosing a method for experimental induction of joint degeneration; and the challenges of measuring of OA progression and symptoms in these models.


animal model osteoarthritis 



This publication was made possible by NIH Grant Numbers RO1-AR056834, R41 AR057276 and 2P20 GM104937 and the Lucy Lippitt Endowment. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.


  1. 1.
    Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–8. PubMed PMID: 21788902. Epub 2011/07/27. eng.PubMedCrossRefGoogle Scholar
  2. 2.
    Adatia A, Rainsford KD, Kean WF. Osteoarthritis of the knee and hip. Part I: aetiology and pathogenesis as a basis for pharmacotherapy. J Pharm Pharmacol. 2012;64(5):617–25.PubMedCrossRefGoogle Scholar
  3. 3.
    Iannone F, Lapadula G. Obesity and inflammation—targets for OA therapy. Curr Drug Targets. 2010;11(5):586–98.PubMedCrossRefGoogle Scholar
  4. 4.
    Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11(3):224. PubMed PMID: 19519926. Pubmed Central PMCID: 2714092.PubMedCrossRefGoogle Scholar
  5. 5.
    Loeser RF. Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage. 2009;17(8):971–9. PubMed PMID: 19303469. Pubmed Central PMCID: 2713363.PubMedCrossRefGoogle Scholar
  6. 6.
    OAC Histopathology Supplement. In: Aigner T, Lohmander, S, editors. Osteoarthritis and cartilage/OARS, Osteoarthritis Research Society; 2010.Google Scholar
  7. 7.
    Fleming BC, Machan MT, Shalvoy MT, Murray MM. A collagen platelet composite to stimulate healing after ACL surgery also minimizes cartilage damage in the ACL injured knee. Osteoarthritis Cartilage. 2012;20 (Supplement 1)(S68).Google Scholar
  8. 8.
    Murray MM, Magarian EM, Harrison SL, Mastrangelo AN, Zurakowski D, Fleming BC. The effect of skeletal maturity on functional healing of the anterior cruciate ligament. J Bone Joint Surg Am. 2010;92(11):2039–49. PubMed PMID: 20810854. Pubmed Central PMCID: 2924734. Epub 2010/09/03. eng.PubMedCrossRefGoogle Scholar
  9. 9.
    Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105–15. PubMed PMID: 19831641. Pubmed Central PMCID: 3121784. Epub 2009/10/17. eng.PubMedCrossRefGoogle Scholar
  10. 10.
    Proffen BL, McElfresh M, Fleming BC, Murray MM. A comparative anatomical study of the human knee and six animal species. Knee. 2012;19(4):493–9. PubMed PMID: 21852139. Pubmed Central PMCID: 3236814. Epub 2011/08/20. eng.PubMedCrossRefGoogle Scholar
  11. 11.
    Murray MM, Fleming BC. Use of a Bioactive Scaffold to Stimulate ACL Healing also Minimizes Post-traumatic Osteoarthritis After Surgery. Trans Orthop Res Soc. 2013;38:51Google Scholar
  12. 12.
    Muir P, Schwartz Z, Malek S, Kreines A, Cabrera SY, Buote NJ, et al. Contralateral cruciate survival in dogs with unilateral non-contact cranial cruciate ligament rupture. PLoS One. 2011;6(10):e25331. PubMed PMID: 21998650. Pubmed Central PMCID: 3187768.PubMedCrossRefGoogle Scholar
  13. 13.
    Bendele AM. Animal models of osteoarthritis. J Musculoskelet Neuronal Interact. 2001;1(4):363–76. PubMed PMID: 15758487. Epub 2005/03/11. eng.PubMedGoogle Scholar
  14. 14.
    Janusz MJ, Bendele AM, Brown KK, Taiwo YO, Hsieh L, Heitmeyer SA. Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cartilage. 2002;10(10):785–91.PubMedCrossRefGoogle Scholar
  15. 15.
    Englund M, Guermazi A, Roemer FW, Aliabadi P, Yang M, Lewis CE, et al. Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the Multicenter Osteoarthritis Study. Arthritis Rheum. 2009;60(3):831–9. PubMed PMID: 19248082. Pubmed Central PMCID.PubMedCrossRefGoogle Scholar
  16. 16.
    Karahan S, Kincaid SA, Kammermann JR, Wright JC. Evaluation of the rat stifle joint after transection of the cranial cruciate ligament and partial medial meniscectomy. Comp Med. 2001;51(6):504–12. PubMed PMID: 11924812. Epub 2002/04/02. eng.PubMedGoogle Scholar
  17. 17.
    Messner K, Gao J. The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat. 1998;193(Pt 2):161–78. PubMed PMID: 9827632. Pubmed Central PMCID: 1467836. Epub 1998/11/25. eng.PubMedCrossRefGoogle Scholar
  18. 18.
    Seitz AM, Lubomierski A, Friemert B, Ignatius A, Durselen L. Effect of partial meniscectomy at the medial posterior horn on tibiofemoral contact mechanics and meniscal hoop strains in human knees. J Orthop Res. 2012;30(6):934–42. PubMed PMID: 22072570. Epub 2011/11/11. eng.PubMedCrossRefGoogle Scholar
  19. 19.
    Moody HR, Heard BJ, Frank CB, Shrive NG, Oloyede AO. Investigating the potential value of individual parameters of histological grading systems in a sheep model of cartilage damage: the modified Mankin method. J Anat. 2012;221(1):47–54. PubMed PMID: 22591160. Epub 2012/05/18. eng.PubMedCrossRefGoogle Scholar
  20. 20.
    Barve RA, Minnerly JC, Weiss DJ, Meyer DM, Aguiar DJ, Sullivan PM, et al. Transcriptional profiling and pathway analysis of monosodium iodoacetate-induced experimental osteoarthritis in rats: relevance to human disease. Osteoarthritis Cartilage. 2007;15(10):1190–8. PubMed PMID: 17500014. Epub 2007/05/15. eng.PubMedCrossRefGoogle Scholar
  21. 21.
    Galois L, Etienne S, Grossin L, Watrin-Pinzano A, Cournil-Henrionnet C, Loeuille D, et al. Dose–response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarthritis Cartilage. 2004;12(10):779–86. PubMed PMID: 15450527. Epub 2004/09/29. eng.PubMedCrossRefGoogle Scholar
  22. 22.
    Appleton CT, McErlain DD, Pitelka V, Schwartz N, Bernier SM, Henry JL, et al. Forced mobilization accelerates pathogenesis: characterization of a preclinical surgical model of osteoarthritis. Arthritis Res Ther. 2007;9(1):R13. PubMed PMID: 17284317. Pubmed Central PMCID: 1860072. Epub 2007/02/08. eng.PubMedCrossRefGoogle Scholar
  23. 23.
    Elsaid KA, Zhang L, Waller K, Tofte J, Teeple E, Fleming BC, et al. The impact of forced joint exercise on lubricin biosynthesis from articular cartilage following ACL transection and intra-articular lubricin’s effect in exercised joints following ACL transection. Osteoarthritis Cartilage. 2012;20(8):940–8. PubMed PMID: 22579916. Epub 2012/05/15. Eng.Google Scholar
  24. 24.
    Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J, et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res. 2012;64(4):455–74. PubMed PMID: 22563589. Epub 2012/05/09. eng.CrossRefGoogle Scholar
  25. 25.
    Issa RI, Griffin TM. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiology Aging Age Relat Dis. 2012;2(2012). pii: 17470. PubMed PMID: 22662293. Pubmed Central PMCID: 3364606. Epub 2012/06/05. Eng.Google Scholar
  26. 26.
    Griffin TM, Fermor B, Huebner JL, Kraus VB, Rodriguiz RM, Wetsel WC, et al. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Ther. 2010;12(4):R130. PubMed PMID: 20604941. Pubmed Central PMCID: 2945020. Epub 2010/07/08. eng.PubMedCrossRefGoogle Scholar
  27. 27.
    Louer CR, Furman BD, Huebner JL, Kraus VB, Olson SA, Guilak F. Diet-induced obesity significantly increases the severity of post-traumatic arthritis in mice. Arthritis Rheum. 2012;64(10): 3220–30. PubMed PMID: 22576842. Epub 2012/05/12. Eng.Google Scholar
  28. 28.
    Griffin TM, Guilak F. Why is obesity associated with osteoarthritis? Insights from mouse models of obesity. Biorheology. 2008;45(3–4):387–98. PubMed PMID: 18836239. Pubmed Central PMCID: 2748656. Epub 2008/10/07. eng.PubMedGoogle Scholar
  29. 29.
    Griffin TM, Huebner JL, Kraus VB, Yan Z, Guilak F. Induction of osteoarthritis and metabolic inflammation by a very high-fat diet in mice: effects of short-term exercise. Arthritis Rheum. 2012;64(2):443–53. PubMed PMID: 21953366. Pubmed Central PMCID: 3268860. Epub 2011/09/29. eng.PubMedCrossRefGoogle Scholar
  30. 30.
    Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16(4):494–502. PubMed PMID: 13498604. Pubmed Central PMCID: 1006995. Epub 1957/12/01. eng.PubMedCrossRefGoogle Scholar
  31. 31.
    McErlain DD, Ulici V, Darling M, Gati JS, Pitelka V, Beier F, et al. An in vivo investigation of the initiation and progression of subchondral cysts in a rodent model of secondary osteoarthritis. Arthritis Res Ther. 2012;14(1):R26. PubMed PMID: 22304985. Epub 2012/02/07. Eng.PubMedCrossRefGoogle Scholar
  32. 32.
    Fenty MC, Dodge GR, Kassey VB, Witschey WR, Borthakur A, Reddy R. Quantitative cartilage degeneration associated with spontaneous osteoarthritis in a guinea pig model. J Magn Reson Imaging. 2012;35(4):891–8. PubMed PMID: 22128105. Pubmed Central PMCID: 3292653. Epub 2011/12/01. eng.PubMedCrossRefGoogle Scholar
  33. 33.
    Chan DD, Neu CP. Probing articular cartilage damage and disease by quantitative magnetic resonance imaging. J R Soc Interface. 2013;10(78):20120608. PubMed PMID: 23135247.PubMedCrossRefGoogle Scholar
  34. 34.
    Hunter DJ, Zhang W, Conaghan PG, Hirko K, Menashe L, Li L, et al. Systematic review of the concurrent and predictive validity of MRI biomarkers in OA. Osteoarthritis Cartilage. 2011;19(5):557–88. PubMed PMID: 21396463. Pubmed Central PMCID: 3268360.PubMedCrossRefGoogle Scholar
  35. 35.
    Kraus VB, Burnett B, Coindreau J, Cottrell S, Eyre D, Gendreau M, et al. Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthritis Cartilage. 2011;19(5):515–42. PubMed PMID: 21396468. Epub 2011/03/15. eng.PubMedCrossRefGoogle Scholar
  36. 36.
    Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D, et al. Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage. 2006;14(8):723–7. PubMed PMID: 16733093. Epub 2006/05/31. eng.PubMedCrossRefGoogle Scholar
  37. 37.
    Kraus VB, Huebner JL, Fink C, King JB, Brown S, Vail TP, et al. Urea as a passive transport marker for arthritis biomarker studies. Arthritis Rheum. 2002;46(2):420–7. PubMed PMID: 11840444. Epub 2002/02/13. eng.PubMedCrossRefGoogle Scholar
  38. 38.
    Seifer DR, Furman BD, Guilak F, Olson SA, Brooks 3rd SC, Kraus VB. Novel synovial fluid recovery method allows for quantification of a marker of arthritis in mice. Osteoarthritis Cartilage. 2008;16(12):1532–8. PubMed PMID: 18538588. Pubmed Central PMCID: 2602808. Epub 2008/06/10. eng.PubMedCrossRefGoogle Scholar
  39. 39.
    Little CB, Zaki S. What constitutes an “animal model of osteoarthritis”—the need for consensus? Osteoarthritis Cartilage. 2012;20(4):261–7. PubMed PMID: 22321719. Epub 2012/02/11. eng.PubMedCrossRefGoogle Scholar
  40. 40.
    Neugebauer V, Han JS, Adwanikar H, Fu Y, Ji G. Techniques for assessing knee joint pain in arthritis. Mol Pain. 2007;3(8). PubMed PMID: 17391515. Pubmed Central PMCID: 1851005. Epub 2007/03/30. eng.Google Scholar
  41. 41.
    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53(1):55–63. PubMed PMID: 7990513. Epub 1994/07/01. eng.PubMedCrossRefGoogle Scholar
  42. 42.
    Allen KD, Mata BA, Gabr MA, Huebner JL, Adams Jr SB, Kraus VB, et al. Kinematic and dynamic gait compensations resulting from knee instability in a rat model of osteoarthritis. Arthritis Res Ther. 2012;14(2):R78. PubMed PMID: 22510443. Epub 2012/04/19. Eng.PubMedCrossRefGoogle Scholar
  43. 43.
    Bove SE, Laemont KD, Brooker RM, Osborn MN, Sanchez BM, Guzman RE, et al. Surgically induced osteoarthritis in the rat results in the development of both osteoarthritis-like joint pain and secondary hyperalgesia. Osteoarthritis Cartilage. 2006;14(10):1041–8. PubMed PMID: 16769229. Epub 2006/06/14. eng.PubMedCrossRefGoogle Scholar
  44. 44.
    Fernihough J, Gentry C, Malcangio M, Fox A, Rediske J, Pellas T, et al. Pain related behaviour in two models of osteoarthritis in the rat knee. Pain. 2004;11(1–2):83–93. PubMed PMID: 15494188. Epub 2004/10/21. eng.CrossRefGoogle Scholar
  45. 45.
    Bove SE, Calcaterra SL, Brooker RM, Huber CM, Guzman RE, Juneau PL, et al. Weight bearing as a measure of disease progression and efficacy of anti-inflammatory compounds in a model of monosodium iodoacetate-induced osteoarthritis. Osteoarthritis Cartilage. 2003;11(11):821–30. PubMed PMID: 14609535. Epub 2003/11/12. eng.PubMedCrossRefGoogle Scholar
  46. 46.
    Jay GD, Elsaid KA, Kelly KA, Anderson SC, Zhang L, Teeple E, et al. Prevention of cartilage degeneration and gait asymmetry by lubricin tribosupplementation in the rat following anterior cruciate ligament transection. Arthritis Rheum. 2012;64(4):1162–71. PubMed PMID: 22127873. Pubmed Central PMCID: 3297696. Epub 2011/12/01. eng.PubMedCrossRefGoogle Scholar
  47. 47.
    Boettger MK, Leuchtweis J, Schaible HG, Schmidt M. Videoradiographic analysis of the range of motion in unilateral experimental knee joint arthritis in rats. Arthritis Res Ther. 2011;13(3):R79. PubMed PMID: 21619620. Pubmed Central PMCID: 3218889. Epub 2011/05/31. eng.PubMedCrossRefGoogle Scholar
  48. 48.
    Boettger MK, Weber K, Schmidt M, Gajda M, Brauer R, Schaible HG. Gait abnormalities differentially indicate pain or structural joint damage in monoarticular antigen-induced arthritis. Pain. 2009;145(1–2):142–50. PubMed PMID: 19570610. Epub 2009/07/03. eng.PubMedCrossRefGoogle Scholar
  49. 49.
    Malek S, Sample SJ, Schwartz Z, Nemke B, Jacobson PB, Cozzi EM, et al. Effect of analgesic therapy on clinical outcome measures in a randomized controlled trial using client-owned dogs with hip osteoarthritis. BMC Vet Res. 2012;8(1):185. PubMed PMID: 23035739.PubMedCrossRefGoogle Scholar
  50. 50.
    Ishihara A, Bertone AL, Rajala-Schultz PJ. Association between subjective lameness grade and kinetic gait parameters in horses with experimentally induced forelimb lameness. Am J Vet Res. 2005;66(10):1805–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Frank CB, Beveridge JE, Huebner KD, Heard BJ, Tapper JE, O’Brien EJ, et al. Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J Orthop Res. 2012;30(3):384–92. PubMed PMID: 21919045. Epub 2011/09/16. eng.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Erin Teeple
    • 1
  • Gregory D. Jay
    • 1
    • 2
  • Khaled A. Elsaid
    • 3
  • Braden C. Fleming
    • 4
    • 5
  1. 1.Department of Emergency MedicineBrown Medical School/Rhode Island HospitalProvidenceUSA
  2. 2.School of EngineeringBrown UniversityProvidenceUSA
  3. 3.Massachusetts College of Pharmacy and Health SciencesBostonUSA
  4. 4.Bioengineering Laboratory, Department of OrthopaedicsBrown Medical School/Rhode Island HospitalProvidenceUSA
  5. 5.Department of Orthopaedics and SurgeryRhode Island HospitalProvidenceUSA

Personalised recommendations