The AAPS Journal

, Volume 15, Issue 2, pp 337–346 | Cite as

Simultaneous Analysis of Multiple Monoclonal Antibody Biotherapeutics by LC-MS/MS Method in Rat Plasma Following Cassette-Dosing

  • Hongyan Li
  • Robert Ortiz
  • Linh T. B. Tran
  • Hossein Salimi-Moosavi
  • Jennifer Malella
  • Christopher A. James
  • Jean W. Lee
Research Article

Abstract

We have recently developed a general liquid chromatography-tandem mass spectrometric (LC-MS/MS) method using a stable isotope-labeled (SIL) monoclonal antibody (mAb) as an internal standard (IS) for single-analyte quantification of mAb (Li et al. Anal Chem 84(3):1267–1273, 2012). The method offers an advantage over ligand binding assay in reducing the time and resources needed for bioanalytical support in preclinical stages of drug development. In this paper, we report another marked increase in assay efficiency for multi-analyte bioanalysis using unique surrogate peptides for each analyte and the strategic choice of the SIL-IS peptide. The method was qualified for the simultaneous determinations of four mAbs in rat plasma and applied to samples from discrete- and cassette-dosed rats. The pharmacokinetic parameters of the four mAbs of cassette dosing were comparable to those of discrete dosing and of enzyme-linked immunosorbent assay results. Although there may be limitations and special considerations for cassette-dosing of biologics, these results demonstrate the robust performance of the multi-analyte LC-MS/MS method allowing cassette-dosing that would ultimately reduce animal use and improve efficiency.

Key words

cassette dosing of biologics immunoaffinity-mass spectrometry ligand binding assay monoclonal antibody biotherapeutics multi-analyte LC-MS/MS 

Notes

Acknowledgment

We thank Agi Hamburger and Richele Bruno on their contribution on the preparation of the whole molecule SIL-IS; Marcus Soto and Kevin Salyers for conducting the preclinical PK study; and Gary Skiles and Mark Rose for their encouragement and support on this research project. We also thank Gary Skiles and Michael Hall for critical review of this manuscript.

Supplementary material

12248_2012_9435_MOESM1_ESM.doc (192 kb)
ESM 1 (DOC 192 kb)

References

  1. 1.
    Dubois M, Becher F, Herbet A, Ezan E. Immuno-mass spectrometry assay of EPI-HNE4, a recombinant protein inhibitor of human elastase. Rapid Comm Mass Spectrom. 2007;21(3):352–8.CrossRefGoogle Scholar
  2. 2.
    Dubois M, Fenaille F, Clement G, Lechmann M, Tabet JC, Ezan E, et al. Immunopurification and mass spectrometric quantification of the active form of a chimeric therapeutic antibody in human serum. Anal Chem. 2008;80(5):1737–45.PubMedCrossRefGoogle Scholar
  3. 3.
    Ezan E, Dubois M, Becher F. Bioanalysis of recombinant proteins and antibodies by mass spectrometry. Analyst. 2009;134(5):825–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Hagman C, Ricke D, Ewert S, Bek S, Falchetto R, Bitsch F. Absolute quantification of monoclonal antibodies in biofluids by liquid chromatography-tandem mass spectrometry. Anal Chem. 2008;80(4):1290–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Heudi O, Barteau S, Zimmer D, Schmidt J, Bill K, Lehmann N, et al. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC-MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal Chem. 2008;80(11):4200–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Liu H, Manuilov AV, Chumsae C, Babineau ML, Tarcsa E. Quantitation of a recombinant monoclonal antibody in monkey serum by liquid chromatography-mass spectrometry. Anal Biochem. 2011;414(1):147–53.PubMedCrossRefGoogle Scholar
  7. 7.
    Li H, Ortiz R, Tran L, Hall M, Spahr C, Walker K, et al. General LC-MS/MS method approach to quantify therapeutic monoclonal antibodies using a common whole antibody internal standard with application to preclinical studies. Anal Chem. 2012;84(3):1267–73.PubMedCrossRefGoogle Scholar
  8. 8.
    Hall MP, Gegg C, Walker K, Spahr C, Ortiz R, Patel V, et al. Ligand-binding mass spectrometry to study biotransformation of fusion protein drugs and guide immunoassay development: strategic approach and application to peptibodies targeting the thrombopoietin receptor. AAPS J. 2010;12(4):576–85.PubMedCrossRefGoogle Scholar
  9. 9.
    Bayliss MK, Frick LW. High-throughput pharmacokinetics: cassette dosing. Curr Opin Drug Discov Dev. 1999;2(1):20–5.Google Scholar
  10. 10.
    Manitpisitkul P, White RE. Whatever happened to cassette-dosing pharmacokinetics? Drug discov today. 2004;9(15):652–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Korfmacher WA, Cox KA, Ng KJ, Veals J, Hsieh Y, Wainhaus S, et al. Cassette-accelerated rapid rat screen: a systematic procedure for the dosing and liquid chromatography/atmospheric pressure ionization tandem mass spectrometric analysis of new chemical entities as part of new drug discovery. Rapid Comm Mass Spectrom. 2001;15(5):335–40.CrossRefGoogle Scholar
  12. 12.
    Liu B, Chang J, Gordon WP, Isbell J, Zhou Y, Tuntland T. Snapshot PK: a rapid rodent in vivo preclinical screening approach. Drug discov today. 2008;13(7–8):360–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Nagilla R, Nord M, McAtee JJ, Jolivette LJ. Cassette dosing for pharmacokinetic screening in drug discovery: comparison of clearance, volume of distribution, half-life, mean residence time, and oral bioavailability obtained by cassette and discrete dosing in rats. J Pharm Sci. 2011;100(9):3862–74.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith NF, Raynaud FI, Workman P. The application of cassette dosing for pharmacokinetic screening in small-molecule cancer drug discovery. Mol Cancer Ther. 2007;6(2):428–40.PubMedCrossRefGoogle Scholar
  15. 15.
    White RE, Manitpisitkul P. Pharmacokinetic theory of cassette dosing in drug discovery screening. Drug Metabol Dispos. 2001;29(7):957–66.Google Scholar
  16. 16.
    Bautista AC, Salimi-Moosavi H, Jawa V. Universal immunoassay applied during early development of large molecules to understand impact of immunogenicity on biotherapeutic exposure. AAPS J. 2012 Sep 1;14(4)843-849.Google Scholar
  17. 17.
    Ponce R, Abad L, Amaravadi L, Gelzleichter T, Gore E, Green J, et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol. 2009;54(2):164–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Chirmule N, Jawa V, Meibohm B. Immunogenicity to therapeutic proteins: impact on PK/PD and efficacy. AAPS J. 2012;14(2):296–302.PubMedCrossRefGoogle Scholar
  19. 19.
    Hop CE, Wang Z, Chen Q, Kwei G. Plasma-pooling methods to increase throughput for in vivo pharmacokinetic screening. J Pharm Sci. 1998;87(7):901–3.PubMedCrossRefGoogle Scholar
  20. 20.
    Christ DD. Cassette dosing pharmacokinetics: valuable tool or flawed science? Drug Metabol Dispos. 2001;29(7):935.Google Scholar
  21. 21.
    He K, Qian M, Wong H, Bai SA, He B, Brogdon B, et al. N-in-1 dosing pharmacokinetics in drug discovery: experience, theoretical and practical considerations. J Pharm Sci. 2008;97(7):2568–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Hager JW, Le Blanc JC. High-performance liquid chromatography-tandem mass spectrometry with a new quadrupole/linear ion trap instrument. J Chrom. 2003;1020(1):3–9.CrossRefGoogle Scholar
  24. 24.
    Hopfgartner G, Varesio E, Tschappat V, Grivet C, Bourgogne E, Leuthold LA. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom. 2004;39(8):845–55.PubMedCrossRefGoogle Scholar
  25. 25.
    Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R. The Orbitrap: a new mass spectrometer. J Mass Spectrom. 2005;40(4):430–43.PubMedCrossRefGoogle Scholar
  26. 26.
    Kay RG, Barton C, Velloso CP, Brown PR, Bartlett C, Blazevich AJ, et al. High-throughput ultra-high-performance liquid chromatography/tandem mass spectrometry quantitation of insulin-like growth factor-I and leucine-rich alpha-2-glycoprotein in serum as biomarkers of recombinant human growth hormone administration. Rapid Comm Mass Spectrom. 2009;23(19):3173–82.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2012

Authors and Affiliations

  • Hongyan Li
    • 1
  • Robert Ortiz
    • 1
  • Linh T. B. Tran
    • 1
  • Hossein Salimi-Moosavi
    • 1
  • Jennifer Malella
    • 1
  • Christopher A. James
    • 1
  • Jean W. Lee
    • 1
  1. 1.Departments of PKDMAmgen IncThousand OaksUSA

Personalised recommendations