DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles

Abstract

In recent years, several mathematical models have been developed for analysis of drug dissolution data, and many different mathematical approaches have been proposed to assess the similarity between two drug dissolution profiles. However, until now, no computer program has been reported for simplifying the calculations involved in the modeling and comparison of dissolution profiles. The purposes of this article are: (1) to describe the development of a software program, called DDSolver, for facilitating the assessment of similarity between drug dissolution data; (2) to establish a model library for fitting dissolution data using a nonlinear optimization method; and (3) to provide a brief review of available approaches for comparing drug dissolution profiles. DDSolver is a freely available program which is capable of performing most existing techniques for comparing drug release data, including exploratory data analysis, univariate ANOVA, ratio test procedures, the difference factor f 1, the similarity factor f 2, the Rescigno indices, the 90% confidence interval (CI) of difference method, the multivariate statistical distance method, the model-dependent method, the bootstrap f 2 method, and Chow and Ki’s time series method. Sample runs of the program demonstrated that the results were satisfactory, and DDSolver could be served as a useful tool for dissolution data analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Lu DR, Abu-Izza K, Mao F. Nonlinear data fitting for controlled release devices: an integrated computer program. Int J Pharm. 1996;129:243–51.

    Article  CAS  Google Scholar 

  2. 2.

    Phaechamud T. Variables influencing drug release from layered matrix system comprising hydroxypropyl methylcellulose. AAPS PharmSciTech. 2008;9:668–74.

    Article  PubMed  Google Scholar 

  3. 3.

    Di Colo G, Baggiani A, Zambito Y, Mollica G, Geppi M, Serafini MF. A new hydrogel for the extended and complete prednisolone release in the GI tract. Int J Pharm. 2006;310:154–61.

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Papadopoulou V, Kosmidis K, Vlachou M, Macheras P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006;309:44–50.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Orelli JV, Leuenberger H. Search for technological reasons to develop a capsule or a tablet formulation with respect to wettability and dissolution. Int J Pharm. 2004;287:135–45.

    Article  CAS  Google Scholar 

  6. 6.

    Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.

    Google Scholar 

  7. 7.

    Rescigno A. Bioequivalence. Pharm Res. 1992;9:925–8.

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Polli JE, Rekhi GS, Augsburger LL, Shah VP. Methods to compare dissolution profiles and a rationale for wide dissolution specifications for metoprolol tartrate tablets. J Pharm Sci. 1997;86:690–700.

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Yuksel N, Kanik AE, Baykara T. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int J Pharm. 2000;209:57–67.

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Tsong Y, Hammerstrom T, Sathe P, Shah VP. Statistical assessment of mean differences between two dissolution data sets. Drug Inf J. 1996;30:1105–12.

    Google Scholar 

  11. 11.

    Sathe PM, Tsong Y, Shah VP. In-vitro dissolution profile comparison: statistics and analysis, model dependent approach. Pharm Res. 1996;13:1799–803.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50:874–5.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364:328–43.

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    Gurny R, Doelker E, Peppas NA. Modelling of sustained release of water-soluble drugs from porous, hydrophobic polymers. Biomaterials. 1982;3:27–32.

    Article  PubMed  CAS  Google Scholar 

  16. 16.

    Borodkin S, Tucker FE. Linear drug release from laminated hydroxypropyl cellulose-polyvinyl acetate films. J Pharm Sci. 1975;64:1289–94.

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Phaechamud T, Pitaksantayothin K, Kositwattanakoon P, Seehapong P, Jungvivatanavong S. Sustainable release of propranolol hydrochloride tablet using chitin as press-coating material. Silpakorn Univ Int J. 2002;2:147–59.

    Google Scholar 

  18. 18.

    Tsong Y, Hammerstrom T, Chen JJ. Multipoint dissolution specification and acceptance sampling rule based on profile modeling and principal component analysis. J Biopharm Stat. 1997;7:423–39.

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Berry MR, Likar MD. Statistical assessment of dissolution and drug release profile similarity using a model-dependent approach. J Pharm Biomed Anal. 2007;45:194–200.

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Tarvainen M, Peltonen S, Mikkonen H, Elovaara M, Tuunainen M, Paronen P et al. Aqueous starch acetate dispersion as a novel coating material for controlled release products. J Control Release. 2004;96:179–91.

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Ford JL, Mitchell K, Rowe P, Armstrong DJ, Elliott PNC, Rostron C et al. Mathematical modelling of drug release from hydroxypropylmethylcellulose matrices: effect of temperature. Int J Pharm. 1991;71:95–104.

    Article  CAS  Google Scholar 

  22. 22.

    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.

    Article  CAS  Google Scholar 

  23. 23.

    Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985;60:110–1.

    PubMed  CAS  Google Scholar 

  24. 24.

    Hixson AW, Crowell JH. Dependence of reaction velocity upon surface and agitation. Ind Eng Chem. 1931;23:923–31.

    Article  CAS  Google Scholar 

  25. 25.

    Mollo AR, Corrigan OI. An investigation of the mechanism of release of the amphoteric drug amoxycillin from poly(d,l-lactide-co-glycolide) matrices. Pharm Dev Technol. 2002;7:333–43.

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Enscore DJ, Hopfenberg HB, Stannett VT. Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres. Polymer. 1977;18:793–800.

    Article  CAS  Google Scholar 

  27. 27.

    Pillay V, Fassihi R. In vitro release modulation from crosslinked pellets for site-specific drug delivery to the gastrointestinal tract. I. Comparison of pH-responsive drug release and associated kinetics. J Control Release. 1999;59:229–42.

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Baker RW, Lonsdale HS. Controlled release of biologically active agents. New York: Plenum; 1974.

    Google Scholar 

  29. 29.

    Makoid MC, Dufour A, Banakar UV. Modelling of dissolution behaviour of controlled release systems. STP Pharma. 1993;3:49–58.

    CAS  Google Scholar 

  30. 30.

    Peppas NA, Sahlin JJ. A simple equation for the description of solute release III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.

    Article  CAS  Google Scholar 

  31. 31.

    Langenbucher F. Linearization of dissolution rate curves by the Weibull distribution. J Pharm Pharmacol. 1972;24:979–81.

    PubMed  CAS  Google Scholar 

  32. 32.

    Koizumia T, Ritthidej GC, Phaechamud T. Mechanistic modeling of drug release from chitosan coated tablets. J Control Release. 2001;70:277–84.

    Article  Google Scholar 

  33. 33.

    Costa FO, Sousa JJ, Pais AA, Formosinho SJ. Comparison of dissolution profiles of Ibuprofen pellets. J Control Release. 2003;89:199–212.

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Pabón CV, Frutos P, Lastres JL, Frutos G. Matrix tablets containing HPMC and polyamide 12: comparison of dissolution data using the Gompertz function. Drug Dev Ind Pharm. 1994;20:2509–18.

    Article  Google Scholar 

  35. 35.

    Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7:308–13.

    Google Scholar 

  36. 36.

    Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987;1:365–74.

    PubMed  CAS  Google Scholar 

  37. 37.

    Akaike H. A new look at the statistical model identification. IEEE Trans Automat Control. 1974;19:716–23.

    Article  Google Scholar 

  38. 38.

    MicroMath. Scientist User Handbook. Salt Lake: MicroMath; 1995.

    Google Scholar 

  39. 39.

    Mollo AR, Corrigan OI. Effect of poly-hydroxy aliphatic ester polymer type on amoxycillin release from cylindrical compacts. Int J Pharm. 2003;268:71–9.

    Article  PubMed  CAS  Google Scholar 

  40. 40.

    Mayer BX, Mensik C, Krishnaswami S, Hartmut D, Eichler HG, Schmetterer L et al. Pharmacokinetic-pharmacodynamic profile of systemic nitric oxide-synthase inhibition with L-NMMA in humans. Br J Clin Pharmacol. 1999;47:539–44.

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Yamashita F, Hashida M. Mechanistic and empirical modeling of skin permeation of drugs. Adv Drug Deliv Rev. 2003;55:1185–99.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    O'Hara T, Dunne A, Butler J, Devane J. A review of methods used to compare dissolution profile data. Pharm Sci Technol Today. 1998;1:214–23.

    Article  Google Scholar 

  43. 43.

    FDA. Guidance for Industry: Dissolution Testing of Immediate Release Solid Oral Dosage Forms. Rockville: FDA; 1997.

    Google Scholar 

  44. 44.

    Liu JP, Ma MC, Chow SC. Statistical evaluation of similarity factor f2 as a criterion for assessment of similarity between dissolution profiles. Drug Inf J. 1997;31:1255–71.

    Google Scholar 

  45. 45.

    Shah VP, Tsong Y, Sathe P, Liu JP. In vitro dissolution profile comparison–statistics and analysis of the similarity factor, f2. Pharm Res. 1998;15:889–96.

    Article  PubMed  CAS  Google Scholar 

  46. 46.

    Chow SC, Ki YCF. Statistical comparison between dissolution profiles of drug products. J Biopharm Stat. 1997;7:241–58.

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17:811–22.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Pinto JF, Podczeck F, Newton JM. The use of statistical moment analysis to elucidate the mechanism of release of a model drug from pellets produced by extrusion and spheronization. Chem Pharm Bull. 1997;45:171–80.

    CAS  Google Scholar 

  49. 49.

    Podczeck F. Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int J Pharm. 1993;97:93–100.

    Article  CAS  Google Scholar 

  50. 50.

    Brockmeier D. In vitro/in vivo correlation of dissolution using moments of dissolution and transit times. Acta Pharm Technol. 1986;32:164–74.

    CAS  Google Scholar 

  51. 51.

    Rodriguez Cruz MS, Gonzalez Alonso I, Sanchez-Navarro A, Sayalero Marinero ML. In vitro study of the interaction between quinolones and polyvalent cations. Pharm Acta Helv. 1999;73:237–45.

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Khan KA. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27:48–9.

    PubMed  CAS  Google Scholar 

  53. 53.

    Gohel MC, Panchal MK. Comparison of in vitro dissolution profiles using a novel, model-independent approach. Pharm Technol. 2000;24:92–102.

    CAS  Google Scholar 

  54. 54.

    Chow SC, Shao J. On the assessment of similarity for dissolution profiles of two drug products. J Biopharm Stat. 2002;12:311–21.

    Article  PubMed  Google Scholar 

  55. 55.

    Ma MC, Wang BB, Liu JP, Tsong Y. Assessment of similarity between dissolution profiles. J Biopharm Stat. 2000;10:229–49.

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Tsong Y, Sathe PM, Shah VP. In vitro dissolution profile comparison: Encyclopedia of Biopharmaceutical Statistics. London: Informa Healthcare; 2003. p. 456–62.

    Google Scholar 

  57. 57.

    Adams E, Coomans D, Smeyers-Verbeke J, Massart DL. Application of linear mixed effects models to the evaluation of dissolution profiles. Int J Pharm. 2001;226:107–25.

    Article  PubMed  CAS  Google Scholar 

  58. 58.

    Comets E, Mentre F. Evaluation of tests based on individual versus population modeling to compare dissolution curves. J Biopharm Stat. 2001;11:107–23.

    Article  PubMed  CAS  Google Scholar 

  59. 59.

    Peh KK, Lim CP, Quek SS, Khoh KH. Use of artificial neural networks to predict drug dissolution profiles and evaluation of network performance using similarity factor. Pharm Res. 2000;17:1384–9.

    Article  PubMed  CAS  Google Scholar 

  60. 60.

    Lee JC, Chen DT, Hung HN, Chen JJ. Analysis of drug dissolution data. Stat Med. 1999;18:799–814.

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Bartoszynski R, Powers JD, Herderick EE, Pultz JA. Statistical comparison of dissolution curves. Pharmacol Res. 2001;43:369–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank International Science Editing, Compuscript Ltd. for improving the English language of the manuscript. The authors thank partial financial support from Ministry of Science and Technology of the People’s Republic of China under project 2009ZX09310-004 and the Specialized Research Fund for the Doctoral Program of Advanced Education of China (No. 200803161017).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianping Zhou.

Additional information

Yong Zhang and Meirong Huo contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1853 kb)

ESM 2

(ZIP 7.57 MB)

ESM 3

(XLS 219 kb)

ESM 4

(DOC 369 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, Y., Huo, M., Zhou, J. et al. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J 12, 263–271 (2010). https://doi.org/10.1208/s12248-010-9185-1

Download citation

Key words

  • computer program
  • DDSolver
  • dissolution similarity
  • drug dissolution
  • drug-release model