The AAPS Journal

, Volume 12, Issue 1, pp 61–72 | Cite as

Compartmental Analysis and its Manifold Applications to Pharmacokinetics

Review Article Theme: Pharmacokinetics, Biopharmaceutics and Bioequivalence: History and Perspectives


In this paper, I show how the concept of compartment evolved from the simple dilution of a substance in a physiological volume to its distribution in a network of interconnected spaces. The differential equations describing the fate of a substance in a living being can be solved, qualitatively and quantitatively, with the help of a number of mathematical techniques. A number of parameters of pharmacokinetic interest can be computed from the experimental data; often, the data available are not sufficient to determine some parameters, but it is possible to determine their range.

Key words

exit time flow graphs permanence time residence time tracer kinetics transfer function turnover time 



I am grateful to Dr. Anthony Hunt, Department of Biopharmaceutical Sciences, University of California, San Francisco, for his help in preparing this manuscript.

Supplementary material

12248_2009_9160_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1069 kb)


  1. 1.
    Widmark EMP, Tandberg J. Über die Bedingungen für die Akkumulation indifferenter Narkotiken. Theoretische Berechnungen. Biochem Z. 1924;147:358–69.Google Scholar
  2. 2.
    Gehlen W. Wirkungsstärke intravenös verabreichter Arzneimittel als Zeitfunktion. Arch Exp Path Pharmakol. 1933;171:541–6.CrossRefGoogle Scholar
  3. 3.
    Behnke AR, Thomson RM, et al. The rate of elimination of dissolved nitrogen in man in relation to the fat and water content of the body. Am J Physiol. 1935;114:137–46.Google Scholar
  4. 4.
    Teorell T. Kinetics of distribution of substances administered to the body. I. The extravascular modes of administration. Arch Int Pharmacodyn Ther. 1937;57:205–25.Google Scholar
  5. 5.
    Teorell T. Kinetics of distribution of substances administered to the body. II. The intravascular modes of administration. Arch Int Pharmacodyn Ther. 1937;57:226–40.Google Scholar
  6. 6.
    Artom C, Sarzana G, Segrè E. Influence des grasses alimentaires sur la formation des phospholipides dans les tissues animaux (nouvelles recherches). Arch Int Physiol. 1938;47:245–76.CrossRefGoogle Scholar
  7. 7.
    Rescigno A. Foundations of pharmacokinetics. New York: Kluwer; 2003.Google Scholar
  8. 8.
    Hearon JZ. Theorems on linear systems. Ann N Y Acad Sci. 1963;108:36–68.CrossRefPubMedGoogle Scholar
  9. 9.
    von Bertalanffy L. General system theory. New York: George Braziller; 1968.Google Scholar
  10. 10.
    Mikusinski J. Operational calculus. London: Pergamon; 1959.Google Scholar
  11. 11.
    Erdelyi A. Operational calculus and generalized functions. New York: Holt, Rinehart and Winston; 1962.Google Scholar
  12. 12.
    Mason SJ. Feedback theory. Some properties of signal flow graphs. Proc IRE. 1953;41:1144–56.CrossRefGoogle Scholar
  13. 13.
    Rescigno A. Flow diagrams of multicompartment systems. Ann N Y Acad Sci. 1963;108:204–16.CrossRefPubMedGoogle Scholar
  14. 14.
    Laue R. Elemente der Graphentheorie und ihre Anwendung in den biologischen Wissenschaften. Leipzig: Akademische Verlaggesellschaft Geest & Portig; 1970.Google Scholar
  15. 15.
    Wilde O. The picture of Dorian Gray. New York: Everyman’s Library; 1930. Chapter III, p. 102.Google Scholar
  16. 16.
    Matthews CME. The theory of tracer experiments with 131I-labelled plasma proteins. Phys Med Biol. 1957;2:36–53.CrossRefPubMedGoogle Scholar
  17. 17.
    Berman M, Schoenfeld R. Invariants in experimental data. J Appl Phys. 1956;27:1361–70.CrossRefGoogle Scholar
  18. 18.
    Rescigno A. On the use of pharmacokinetic models. Phys Med Biol. 2004;49:4657–76.CrossRefPubMedGoogle Scholar
  19. 19.
    Willems JC. Consequences of a dissipative inequality in the theory of dynamical systems. In: von Dixhoorn JJ, Evans FJ, editors. Physical structure in system theory. London: Academic; 1974. p. 193–218.Google Scholar
  20. 20.
    Goresky CA. A linear method for determining liver sinusoidal and extravascular volumes. Am J Physiol. 1963;204:626–40.PubMedGoogle Scholar
  21. 21.
    Rescigno A. The rise and fall of compartmental analysis. Pharmacol Res. 2001;44:337–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Rescigno A, Beck JS. The use and abuse of models. J Pharmacokinet Biopharm. 1987;15:327–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Mordenti J, Rescigno A. Estimation of permanence time, exit time, dilution factor, and steady-state volume of distribution. Pharm Res. 1992;9:17–25.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2009

Authors and Affiliations

  1. 1.StillwaterUSA

Personalised recommendations