The AAPS Journal

, Volume 10, Issue 2, pp 261–267 | Cite as

Development of a GC-MS Assay for the Determination of Fentanyl Pharmacokinetics in Rabbit Plasma after Sublingual Spray Delivery

  • Ahmad H. Malkawi
  • Abeer M. Al-Ghananeem
  • Peter A. Crooks
Brief/Technical Note

Key words

breakthrough pain fentanyl GC-MS spray sublingual delivery 



The authors wish to thank Insys Therapeutics, Inc. (Phoenix, AZ) for their support of this research.


  1. 1.
    G. M. Hall. Fentanyl and the metabolic response to surgery. Br. J. Anaesth. 52:561–562 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    L. E. Mather. Clinical pharmacokinetics of fentanyl and its newer derivatives. Clin. Pharmacokinet. 8:422–446 (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    R. K. Portenoy, and D. Lesage. Management of cancer pain. Lancet. 353:1695–1700 (1999).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Hanks, R. K. Portenoy, N. MacDonald, and K. Forbes. Difficult pain problems. Oxford textbook of palliative medicine, 2nd edn, Oxford University Press, Oxford, 1998.Google Scholar
  5. 5.
    P. J. Slattery, and R. A. Boas. Newer methods of delivery of opiates for relief of pain. Drugs. 30(6):539–551 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    D. Harris, and J. R. Robinson. Drug delivery via the mucous membranes of the oral cavity. Pharm. Sci. 81:1–10 (1992).CrossRefGoogle Scholar
  7. 7.
    H. Zhang, J. Zhang, and J. B. Streisand. Oral mucosal drug delivery. Clinical pharmacokinetics and therapeutic applications. Clin. Pharmacokinet. 41:661–680 (2002).PubMedCrossRefGoogle Scholar
  8. 8.
    S. Bredenberg, M. Duberg, B. Lennernas, H. Lennernas, A. Petterson, M. Westerberg, and C. Nystrom. In vitro and in vivo evaluation of a new sublingual tablet system for rapid oromucosal absorption using fentanyl citrate as the active substance. Eur. J Pharm. Sci. 20:327–334 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    J. B. Streisand, J. R. Varvel, D. R. Stanski, L. L. Mairc, M. A. Ashburn, B. I. Hague, S. D. Tarver, and T. H. Stanley. Absorption and bioavailability of oral transmucosal fentanyl citrate. Anesthesiology. 75:223–229 (1991).PubMedCrossRefGoogle Scholar
  10. 10.
    A. M. Al-Ghananeem, A. H. Malkawi, and P. A. Crooks. Scopolamine sublingual spray: An alternative route of delivery for the treatment of motion sickness. Drug Dev. Ind. Pharm. 33(5):577–582 (2007).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Mannila, T. Jaervinen, K. Jaervinen, J. Tervonen, and P. Jarho. Sublingual administration of D9-tetrahydrocannabinol/b-cyclodextrin complex increases the bioavailability of D9-tetrahydrocannabinol in rabbits. Life Sci. 78(17):1911–1914 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    A. M. Al-Ghananeem, A. H. Malkawi, and P. A. Crooks. Effect of pH on sublingual absorption of oxycodone hydrochloride. AAPS PharmSciTech. 7(1):E23 (2006).PubMedCrossRefGoogle Scholar
  13. 13.
    D. S. Weinberg, C. E. Inturris B. Reidenberg et al. Sublingual absorption of selected opioids. Clin. Pharmacol. Ther. 44:335–342 (1988).PubMedGoogle Scholar
  14. 14.
    D. A. Mclain, and C. C. Hug Jr. Intravenous fentanyl kinetics. Clin. Pharmacol. Ther. 28:106–114 (1980).Google Scholar
  15. 15.
    D. L. Mock, J. B. Streisand, B. Hague, R. R. Dzelzkalns, P. L. Baily, N. L. Pace, and T. H. Stanley. Transmucosal narcotic delivery: an evaluation of fentanyl (lollipop) premedication in man. Anesth. Analg. 65:5102 (1986).Google Scholar
  16. 16.
    K. Mystakidou, E. Katsouda, E. Tsilika, E. Parpa, and L. Vlahos. Transdermal therapeutic fentanyl-system (TTS-F). In Vivo. 18(5):633–642 (2004).PubMedGoogle Scholar
  17. 17.
    M. J. Rathbone, R. Purves, F. A. Ghazali, and P. C. Ho. In vivo techniques for studying the oral mucosal absorption characteristics of drugs in animals and humans. In M. J. Rathbone (ed.), Oral mucosal drug delivery, Marcel Dekker, New York, 1996, pp. 121–156.Google Scholar
  18. 18.
    W. M. Dewell Jr, M. Khandaghabadi, M. J. D’Souza, and H. M. Solomon. High-performance liquid chromatographic determination of fentanyl and sufentanil returned from the operating room. Department of Pharmacy, Piedmont Hospital, Atlanta, GA 30309. Am. J. Hosp. Pharm. 50(11):2374–2375 (1993).PubMedGoogle Scholar
  19. 19.
    M. Tsuchiya, W. Ueda, M. Tomoda, and M. Hirakawa. Determination of fentanyl concentrations in the blood with the application of high performance liquid chromatography. Department of Anesthesiology, Kochi Medical School, Nankoku Masui. The Japanese Journal of Anesthesiology. 40(4):644–6 (1991).Google Scholar
  20. 20.
    J. Schuttler, and P. F. White. Optimization of the radioimmunoassays for measuring fentanyl and alfentanil in human serum. Anesthesiology. 61(3):315–320 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    G. Campistron, M. Giroux, J. C. Dumas, M. Hoff, R. Desprats, H. Grandjean, G. Pontonnier, and G. Houin. Fentanyl RIA improved by a single-step extraction. Unite de Pharmacocinetique Clinique, Unite INSERM 168, C.H.U., Toulouse, France. Clin. Chem. 34(10):2157 (1988).PubMedGoogle Scholar
  22. 22.
    W. L. Wang, E. J. Cone, and J. Zacny. Immunoassay evidence for fentanyl in hair of surgery patients. Addiction Research Center, NIDA, Baltimore, MD 21224. Forensic Sci. Int. 61(1):65–72 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    K. Kumar, D. J. Morgan, and D. P. Crankshaw. Determination of fentanyl and alfentanil in plasma by high-performance liquid chromatography with ultraviolet detection. School of Pharmaceutics, Victorian College of Pharmacy Ltd., Melbourne, Australia. J. Chromatogr. 419:464–468 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    R. J. Woestenborghs, D. R. Stanski, J. C. Scott, and J. J. Heykants. Assay methods for fentanyl in serum: gas-liquid chromatography versus radioimmunoassay. Anesthesiology. 67(1):85–90 (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    J. M. Moore, A. C. Allen, D. A. Cooper, and S. M. Carr. Determination of fentanyl and related compounds by capillary gas chromatography with electron capture detection. Anal. Chem. 58(8):1656–60 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Bjorkman, and D. R. Stanski. Simultaneous determination of fentanyl and alfentanil in rat tissues by capillary column gas chromatography. Department of Anesthesia, Stanford University School of Medicine, CA 94305. J. Chromatogr. 433:95–104 (1988).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Kintz, P. Mangin, A. A. Lugnier, and A. J. Chaumont. Simultaneous determination of fentanyl and its major metabolites and fentanyl analogs using gas chromatography and nitrogen-selective detection. Inst. Med. Leg., Strasbourg. Fr. J. Chromatogr. 489(2):459–461 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Laganiere, L. Goernert, K. Gallicano, and R. Otson. Improved extraction, sensitivity, specificity, and stability for measuring fentanyl in plasma by gas chromatography with nitrogen detection. Clin. Chem. 39(10):2206–2207 (1993).PubMedGoogle Scholar
  29. 29.
    J. R. Varvel, S. L. Shafer, S. S. Hwang, P. A. Coen, and D. R. Stanski. Absorption characteristics of transdermally administered fentanyl. Sch. Med., Stanford Univ., Stanford, CA, USA. Anesthesiology. 70(6):928–934 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    R. K. Portenoy, M. A. Southam, S. K. Gupta, J. Lapin, M. Layman, C. E. Inturrisi, and K. M. Foley. Transdermal fentanyl for cancer pain. Repeated dose pharmacokinetics. Department of Neurology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021. Anesthesiology. 78(1):36–43 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2008

Authors and Affiliations

  • Ahmad H. Malkawi
    • 1
  • Abeer M. Al-Ghananeem
    • 1
  • Peter A. Crooks
    • 1
  1. 1.College of PharmacyUniversity of KentuckyLexingtonUSA

Personalised recommendations