AAPS PharmSciTech

, Volume 8, Issue 1, pp E118–E123 | Cite as

Suppression of agglomeration of ciprofloxacin-loaded human serum albumin nanoparticles

  • P. Vijayaraj Kumar
  • Narendr K. Jain


The present study is aimed at developing and exploring the use of pectin in suppression of agglomeration of ciprofloxacinloaded human serum albumin (HSA) nanoparticles. The HSA-pectin nanoparticles loaded with ciprofloxacin were prepared by the pH-coacervation method, and various physicochemical parameters such as particle size, morphology, ζ-potential, electrolyte-induced flocculation, pH-dependent ζ-potential, drug loading, in vitro drug release, and stability of nanoparticles, were evaluated. The size of the HSA-pectin nanoparticles (F3) was found to be 180 to 290 nm. The HSA nanoparticles were modified with pectin when the critical flocculation concentration of nanoparticles in Na2SO4 solution was increased from 0.3 M to 0.9 M. The isoelectric points of the formed nanoparticles were found to be relatively lower between pH values 3 and 6. Pectin may be used as a pharmaceutical additive for the suppression of particle agglomeration in HSA nanoparticles, and the effect may be attributed to the pectin segments present on the surface of nanoparticles.


Ciprofloxacin human serum albumin pectin nanoparticles agglomeration 


  1. 1.
    Davis SS, Illum L. Colloidal delivery systems, opportunities and challenges. In: Tomlinson E, Davis SS, eds.Site-Specific Drug Delivery: Cell Biology, Medical and Pharmaceutical Aspects. Chichester, UK: Wiley; 1986:931.Google Scholar
  2. 2.
    Moghimi SM, Porter CJH, Muir IS, Illum L, Davis SS. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating.Biochem Biophys Res Commun. 1991;177:861–866.CrossRefGoogle Scholar
  3. 3.
    Illium L, Davis SS, Wilson CG, Thomas NW, Frier M, Hardy JG. Blood clearance and organ deposition of intravenously administered colloidal particles. The effects of particle size, nature and shape.Int J Pharm. 1982;12:135–146.CrossRefGoogle Scholar
  4. 4.
    Artursson P. The fate of microparticulate drug carriers after intravenous administration. In: Illum L, Davis SS, eds.Polymers in Controlled Drug Delivery. Bristol, UK: Wright; 1987:15–24.Google Scholar
  5. 5.
    Lin W, Martin C, Garnett ES, Davis SS, Illum L. Preparation and in vitro characterization of HSA-mPEG nanoparticles.Int J Pharm. 1999;189:161–170.CrossRefGoogle Scholar
  6. 6.
    Harashima H, Sakata K, Funato K, Kiwada H. Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes.Pharm Res. 1994;11:402–406.CrossRefGoogle Scholar
  7. 7.
    Romero EL, Morilla MJ, Regts J, Koning GA, Scherphof GL. On the mechanism of hepatic transendothelial passage of large liposomes.FEBS Lett. 1999;448:193–196.CrossRefGoogle Scholar
  8. 8.
    Gallo JM, Hung CT, Perrier DG. Analysis of albumin microsphere preparation.Int J Pharm. 1984;22:63–74.CrossRefGoogle Scholar
  9. 9.
    Müller BG, Leuenberger H, Kissel T. Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique.Pharm Res. 1996;13:32–37.CrossRefGoogle Scholar
  10. 10.
    Lin W, Coombes AGA, Davies MC, Davis SS, Illum L. Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method.J Drug Target. 1993;1:237–243.CrossRefGoogle Scholar
  11. 11.
    Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles.Int J Pharm. 2003;257:169–180.CrossRefGoogle Scholar
  12. 12.
    Bozdag S, Dillen K, Vandervoort J, Ludwig A. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles.J Pharm Pharmacol. 2005;57:699–707.CrossRefGoogle Scholar
  13. 13.
    Chen CG, Lin W, Coombes AG, Davis SS, Illum L. Preparation of human serum albumin microspheres by novel acetone-heat denaturation method.J Microencapsul. 1994;4:395–407.CrossRefGoogle Scholar
  14. 14.
    Yi YM, Yang TY, Pan WM. Preparation and distribution of 5-fluorouracil125I sodium alginate-bovine serum albumin nanoparticle.World J Gastroenterol. 1999;5:57–60.Google Scholar
  15. 15.
    Rodriguez Cruz MS, Gonzalez Alonso I, Sánchez-Navarro A, Sayalero Marinero ML. In vitro study of the interaction between quinolones and polyvalent cations.Pharm Acta Helv. 1999;73:237–245.CrossRefGoogle Scholar
  16. 16.
    Christensen SH. Pectins. In: Glicksman M, ed.Food Hydrocolloids. vol. 3. Boca Raton, FL: CRC Press; 1986:223–224.Google Scholar
  17. 17.
    Pszczola DE. Pectin's functionality finds use in fat-replacer market.Food Technol. 1991;45:116–117.Google Scholar
  18. 18.
    Szu SC, Bystricky S, Hinojosa-Ahumada M, Egan W, Robbins JB. Synthesis and some immunologic properties of an O-acetyl pectin [poly(1→4)-α-D-GlapA]-protein conjugate as a vaccine for typhoid fever.Infect Immun. 1994;62:5545–5549.Google Scholar
  19. 19.
    Plaschina IG, Braudo EE, Tolstoguzov VB. Circular-dichroism studies of pectin solutions.Carbohydr Res. 1978;60:1–8.CrossRefGoogle Scholar
  20. 20.
    Florence AT, Attwood D.Physicochemical Principles of Pharmacy. London, UK: Macmillan; 1988.Google Scholar
  21. 21.
    Lin W, Coombes AG, Garnett MC, et al. Preparation of sterically stabilized human serum albumin nanospheres using a novel Dextranox-mPEG crosslinking agent.Pharm Res. 1994;11:1588–1592.CrossRefGoogle Scholar
  22. 22.
    Stolnik S, Dunn SE, Gamett MC. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers.Pharm Res. 1994;11:1800–1808.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2007

Authors and Affiliations

  1. 1.Pharmaceutics Research Laboratory, Department of Pharmaceutical SciencesDr Hari Singh Gour UniversitySAGARIndia

Personalised recommendations