AAPS PharmSciTech

, Volume 7, Issue 4, pp E31–E38 | Cite as

Industrially feasible alternative approaches in the manufacture of solid dispersions: A technical report

  • Hamsaraj Karanth
  • Vikram Subraya Shenoy
  • Rayasa Ramachandra Murthy


The purpose of this report was to compile relevant technical information on various alternative strategies that can be used as feasible approaches in the development of solid dispersions. The technologies discussed in the report are spray coating on sugar beads with a fluidized bed coating system, hot melt extrusion, direct capsule filling, electrostatic spinning, surface active carriers, and supercritical fluid technology. The focus is on basic principles, the equipment involved, and the relevant scale-up work. These technologies have been found to eliminate several drawbacks posed by the conventional methods of manufacturing of solid dispersions such as laborious preparation methods, reproducibility, scaling up of manufacturing processes, stability of drug, and vehicle.


hot-melt extrusion solid dispersions direct capsule filling electrostatic spinning surface-active carriers supercritical fluid technology 


  1. 1.
    Wadke DA, Serajuddin ATM, Jacobson H. Preformulation testing. In: Lieberman HA, Lachman L, Schwartz JB, eds. Pharmaceutical Dosage Forms: Tablets. New York, NY: Marcel Dekker; 1989:1–73.Google Scholar
  2. 2.
    Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. II. Experimental evaluation of eutectic mixture: urea-acetaminophen system. J Pharm Sci. 1966;55:482–487.CrossRefGoogle Scholar
  3. 3.
    Goldberg AH, Gibaldi M, Kanig JL. Increasing dissolution rates and gastrointestinal absorption of drugs via solid solutions and eutectic mixtures. III. Experimental evaluation of griseofulvin-succinic acid solution. J Pharm Sci. 1966;55:487–492.CrossRefGoogle Scholar
  4. 4.
    Beten DB, Amighi K, Moes AJ. Preparation of controlled-release coevaporates of dipyridamole by loading neutral pellets in a fluidized-bed coating system. Pharm Res. 1995;12:1269–1272.CrossRefPubMedGoogle Scholar
  5. 5.
    Ho HO, Shu HL, Tsai T, Sheu MT. The preparation and characterization of solid dispersions on pellets using a fluidized bed system. Int J Pharm. 1996;139:223–229.CrossRefGoogle Scholar
  6. 6.
    Gilis PA, De Conde V, Vandecruys R, inventors. Janssen Pharmaceutica NV. Beads having a core coated with an antifungal and a polymer. US patent 5 633 015. May 27, 1997.Google Scholar
  7. 7.
    Kennedy JP, Niebergall PJ. Development and optimization of a solid dispersion hot melt fluid bed coating method. Pharm Dev Technol. 1996;1:51–62.CrossRefPubMedGoogle Scholar
  8. 8.
    el-Egakey MA, Soliva M, Speise P. Hot extruded dosage forms. Pharm Acta Helv. 1971;46:31–52.PubMedGoogle Scholar
  9. 9.
    Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm. 2002;54:107–117.CrossRefPubMedGoogle Scholar
  10. 10.
    Chokshi R, Hossein Z. Hot—Melt Extrusion Technique: A Review. Iran J Pharm Res. 2004;3:3–16.Google Scholar
  11. 11.
    Perissutti B, Newton JM, Podezeck F, Rubessa F. Preparation of extruded Carbamazepine and PEG 4000 as a potential rapid release dosage form. Eur J Pharm Biopharm. 2002;53:125–132.CrossRefPubMedGoogle Scholar
  12. 12.
    Hulsmann S, Backensfeld T, Keitel S, Bodmeier R. Melt extrusion—an alternative method for enhancing the dissolution rate of 17β-estradiol hemihydrate. Eur J Pharm Biopharm. 2000;49:237–242.CrossRefPubMedGoogle Scholar
  13. 13.
    Zeidler J, Neumann J, Liepold B, Rosenberg J, Berndl G, Vollgraf C, inventors. BASF Actiengesellschaft. Fast-acting analgesic. US patent 6 322 816. November 27, 2001.Google Scholar
  14. 14.
    Verreck G, Baert L, Peeters J, Brewster M. Improving aqueous solubility and bioavailability for itraconazole by solid dispersion approach [Serial online]. AAPS PharmSci. 2001;3:M2157.Google Scholar
  15. 15.
    Verreck G, Six K, Van den Mooter G, Baert L, Peeters J, Brewster ME. Characterization of solid dispersions of itraconazole and hydroxypropylmethyl cellulose prepared by melt extrusion—Part I. Int J Pharm. 2003;251:165–174.CrossRefPubMedGoogle Scholar
  16. 16.
    Baert L, Thone D, Verreck G, inventors. Janssen Pharmaceutica. Antifungal compositions with improved bioavailability. World patent 9 744 014. November 27, 1997.Google Scholar
  17. 17.
    Francois D, Jones BE. The hard capsule with the soft center. Paper presented at: European Capsule Technology Symposium; October 11–13, 1978; Constance.Google Scholar
  18. 18.
    Wiley GJ, Ulhah I, Agharkar SN. Development of a semiautomatic system for R&D and clinical use for liquid filled hard gelatin encapsulation. Pharm Technol. 1995;19:72–76.Google Scholar
  19. 19.
    Walker SE, Ganley JA, Bedford K, Eaves T. The filling of molten and thixo formulations into hard gelatin capsules. J Pharm Pharmacol. 1980;32:389–393.CrossRefPubMedGoogle Scholar
  20. 20.
    Serajuddin ATM, Sheen PC, Mufson D, Bernstein DF, Augustine MA. Effect of vehicle amphiphilicity on the dissolution and bioavailability of a poorly water-soluble drug from solid dispersions. J Pharm Sci. 1988;77:414–417.CrossRefPubMedGoogle Scholar
  21. 21.
    Serajuddin ATM, Sheen PC, Augustine MA. Improved dissolution of a poorly water-soluble drug from solid dispersions in poly (ethylene glycol): polysorbate 80 mixtures. J Pharm Sci. 1990;79:463–464.CrossRefPubMedGoogle Scholar
  22. 22.
    Law SL, Lo WY, Lin FM, Chaing CH. Dissolution and absorption of nifedipine in poly (ethylene glycol) solid dispersion containing phosphatidylcholine. Int J Pharm. 1992;84:161–166.CrossRefGoogle Scholar
  23. 23.
    Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. Paper presented at: Industry applications Society Annual Meeting, Toronto, Ontario, Canada, October 2–8, 1993. Conference Record of the 1993 IEEE. 1993;3:1698–1703.Google Scholar
  24. 24.
    Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216–223.CrossRefGoogle Scholar
  25. 25.
    Ignatious F, Baldoni JM, inventors. Smithkline Beecham Corp. Electrospun pharmaceutical compositions. World patent 0 154 667. August 2, 2001.Google Scholar
  26. 26.
    Wnek GE, Kenawy ER, Bowlin GL, et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinyl-acetate), poly (lactic acid) and a blend. J Control Release. 2002;81:57–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polym. 2001;42:261–272.CrossRefGoogle Scholar
  28. 28.
    Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster ME. Preparation and characterization of nanofibers containing amorphous drug dispersions generated by electrostatic spinning. Pharm Res. 2003;20:810–817.CrossRefPubMedGoogle Scholar
  29. 29.
    Dennis AB, Farr SJ, Kellaway IW, Taylor G, Davidson R. In vivo evaluation of rapid release and sustained release Gelucire capsule formulations. Int J Pharm. 1990;65:85–100.CrossRefGoogle Scholar
  30. 30.
    Pozzi F, Longo A, Lazzarini C, Carenzi A. Formulations of ubidecarenone with improved bioavailability. Eur J Pharm Biopharm. 1991;37:243–246.Google Scholar
  31. 31.
    Dordunoo SK, Ford JL, Rubinstein MH. Preformulation studies on solid dispersions containing triamterene or temazepam in polyethylene glycols or Gelucire 44/14 for liquid filling of hard gelatin capsules. Drug Dev Ind Pharm. 1991;17:1685–1713.CrossRefGoogle Scholar
  32. 32.
    Sheen PC, Khetarpal VK, Cariola CM, Rowlings CE. Formulation studies of a poorly water-soluble drug in solid dispersions to improve bioavailability. Int J Pharm. 1995;118:221–227.CrossRefGoogle Scholar
  33. 33.
    Porter CJH, Charman SA, Williams RD, Bakalova MV, Charman WN. Evaluation of emulsifiable glasses for the oral administration of cyclosporin in beagle dogs. Int J Pharm. 1996;141:227–237.CrossRefGoogle Scholar
  34. 34.
    Aungst BJ, Nguyen NH, Rogers NJ, et al. Amphiphilic vehicles improve the oral bioavailability of a poorly soluble HIV protease inhibitor at high doses. Int J Pharm. 1997;156:79–88.CrossRefGoogle Scholar
  35. 35.
    Morris KR, Knipp GT, Serajuddin ATM. Structural properties of poly(ethylene glycol)-polysorbate 80 mixture, a solid dispersion vehicle. J Pharm Sci. 1992;81:1185–1188.CrossRefPubMedGoogle Scholar
  36. 36.
    Veiga MD, Escobar C, Bernard MJ. Dissolution behavior of drugs from binary and ternary systems. Int J Pharm. 1993;93:215–220.CrossRefGoogle Scholar
  37. 37.
    Sjokvist E, Nystrom C, Alde'n M, Caram-Lelham N. Physicochemical aspects of drug release. XIV. The effects of some ionic and nonionic surfactants on properties of a sparingly soluble drug in solid dispersions. Int J Pharm. 1992;79:23–133.CrossRefGoogle Scholar
  38. 38.
    Sheen PC, Kim SI, Petillo JJ, Serajuddin ATM. Bioavailability of a poorly water-soluble drug from tablet and solid dispersion in humans. J Pharm Sci. 1991;80:712–714.CrossRefPubMedGoogle Scholar
  39. 39.
    Gines JM, Veiga MD, Arias MJ, Rabasco AM. Elaboration and thermal study of interactions between cinnarizine and Gelucire 53/10 physical mixtures and solid dispersions. Int J Pharm. 1995;126:287–291.CrossRefGoogle Scholar
  40. 40.
    Cole ET. Equipment for filling and sealing liquids in hard gelatin capsules. Bull Technique-Gattefosse. 1996;89:87–88.Google Scholar
  41. 41.
    Serajuddin ATM, Sheen PC, Augustine MA. Water migration from soft gelatin capsule shell to fill material and its effect on drug solubility. J Pharm Sci. 1986;75:62–64.CrossRefPubMedGoogle Scholar
  42. 42.
    Maes P, Brusselmans J, Sereno A, Pitti C, Sonck M, Coffiner M. In vitro and in vivo behavior of some liquid or semisolid filled hard gelatin capsules. Bull Technique-Gattefosse. 1996;89:63–69.Google Scholar
  43. 43.
    Al-Razzak LA, Dias L, Kaul D, Ghosh S. Lipid based systems for oral delivery: Physiological, mechanistic, and product development perspectives. Symposia Abstracts and biographies AAPS Annual Meeting; November 2–6, 1997; Boston, MA. Alexandria, VA: AAPS; 1997:18.Google Scholar
  44. 44.
    Phillips EM, Stella VJ. Rapid expansion from supercritical solutions: application to pharmaceutical processes. Int J Pharm. 1993;94:1–10.CrossRefGoogle Scholar
  45. 45.
    Subramaniam B, Rajewski RA, Snavely K. Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci. 1997;86:885–890.CrossRefPubMedGoogle Scholar
  46. 46.
    McHugh MA, Krukonis VJ. Supercritical Fluid Extraction: principles and Practice. Newton, MA: Butterworth-Heinmann; 1994.Google Scholar
  47. 47.
    Sunkara G, Kompella UB. Drug delivery applications of supercritical fluid technology. Drug Del Technol. 2002;2:44–50.Google Scholar
  48. 48.
    Beach S, Latham D, Sidgwick C, Hanna M, York P. Control of the physical form of salmeterol xinofoate. Org Proc Res Dev. 1993;3:370–376.CrossRefGoogle Scholar
  49. 49.
    Kakumanu VK, Bansal AK. Supercritical fluid technology in pharmaceutical research. CRIPS. 2003;4:8–12.Google Scholar
  50. 50.
    Liu G-T, Nagahama K. Solubility and RESS experiments of solid solution in super critical carbon dioxide. J Chem Eng of Jpn. 1997;30:293–301.CrossRefGoogle Scholar
  51. 51.
    Hanna M, York P, inventors. University of Bradford. Method and apparatus for the formation of particles. World patent 9 501 221. January 12, 1995.Google Scholar
  52. 52.
    Juppo AM, Boiddier C, Khoo C. Evaluation of solid dispersion particles prepared with SEDS. Int J Pharm. 2003;250:385–401.CrossRefPubMedGoogle Scholar
  53. 53.
    York P, Wilkins SA, Storey RA, Walker SE, Harland RS, inventors. Bradford Particle Design PLC, Bristol-Myers Squibb. Coformulation methods and their products. World patent 0 115 664. March 8, 2001.Google Scholar
  54. 54.
    Sencar-Bozic P, Srcic S, Knez Z, Kere J. Improvement of nifedipine dissolution characteristics using supercritical CO2. Int J Pharm. 1997;148:123–130.CrossRefGoogle Scholar
  55. 55.
    Kerc J, Srcic S, Knez Z, Sencar-Bozic P. Micronization of drugs using supercritical carbon dioxide. Int J Pharm. 1999;182:33–39.CrossRefPubMedGoogle Scholar
  56. 56.
    Palakodaty S, York P. Phase behavioral effects on particle formation processes using supercritical fluids. Pharm Res. 1999;16:976–985.CrossRefPubMedGoogle Scholar
  57. 57.
    Gallagher PM, Coffey MP, Krukonis VJ, Klasuits N. Gas-antisolvent recrystallization: new process to recrystallize compounds insoluble in supercritical fluids. ACS Symp Ser. 1989;406:586–594.Google Scholar
  58. 58.
    Moneghini M, Kikic I, Voinovich D, Perissutti B, Filipovic-Greic J. Processing of carbamazepine-PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterization, and in vitro dissolution. Int J Pharm. 2001;222:129–138.CrossRefPubMedGoogle Scholar
  59. 59.
    Sethia S, Squillante E. Physicochemical characterization of solid dispersions of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J Pharm Sci. 2002;91:1948–1957.CrossRefPubMedGoogle Scholar
  60. 60.
    Berens AR, Huvard GS, Korsmeyer RW, Kunig RW. Application of compressed carbon dioxide in the incorporation of additives into polymers. J Appl Polym Sci. 1992;46:231–242.CrossRefGoogle Scholar
  61. 61.
    Kazarian SG, Martirosyan GG. Spectroscopy of polymer/drug formulations processed with supercritical fluids: in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP. Int J Pharm. 2002;232:81–90.CrossRefPubMedGoogle Scholar
  62. 62.
    Vincent MF, Kazarian SG, Eckert CA. Tunable diffusion of D2O in CO2-swollen poly (methylmethacrylate) films. AIChE J. 1997;43:1838–1848.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  • Hamsaraj Karanth
    • 1
  • Vikram Subraya Shenoy
    • 1
  • Rayasa Ramachandra Murthy
    • 1
  1. 1.New Drug Delivery Systems Laboratory, Pharmacy Department, Donors Plaza, Opp University Main Office, M SUniversity of BarodaIndia

Personalised recommendations