Advertisement

AAPS PharmSciTech

, Volume 6, Issue 3, pp E367–E371 | Cite as

Optimization of tablets containing a high dose of spray-dried plant extract: A technical note

  • Luiz Alberto Lira Soares
  • George González Ortega
  • Pedro Ros Petrovick
  • Peter Christian Schmidt
Article

Conclusions

Optimization of CSD and CMC-Na in tablet formulations containing a high dose of SDE fromM ilicifolia was performed by central composite design (CCD) and response surface methodology (RSM). The study demonstrated that CSD affected mainly the hardness and friability, while CMC-Na modified the disintegration times. The optimum formula for minimum disintegration time and friability, and maximum crushing strength, was found to contain 1.2% (wt/wt) of CSD and 5.0% (wt/wt) of CMC-Na. At these conditions, the tablet shows a crushing strength of 107.9 N, a friability of 0.56% (wt/wt), and a maximum disintegration time of 6.8 minutes.

Keywords

Tablets optimization central composite design spray-dried extract Maytenus ilicifolia 

References

  1. 1.
    De Souza TP, Bassani VL, González Ortega G, Dalla Costa TCT, Petrovick PR. Influence of adjuvants on the dissolution profile of tablets containing high doses of spray-dried extract ofMaytenus ilicifolia.Pharmazie. 2001;56:730–733.Google Scholar
  2. 2.
    Rocksloh K, Rapp FR, Abu Abed S, et al. Optimization of crushing strength and disintegration time of a high-dose plant extract tablet by neural networks.Drug Dev Ind Pharm. 1999;25:1015–1025.CrossRefGoogle Scholar
  3. 3.
    Von Eggelkraut-Gottanka SG, Abu Abed S, Müller W, Schmidt PC. Roller compaction and tabletting of St. John's wort plant dry extract using a gap width and force controlled roller compactor, I: granulation and tabletting of eight different extract batches.Pharm Dev Technol. 2002;7:433–445.CrossRefGoogle Scholar
  4. 4.
    El-Banna HM, Minina SA. The construction and use of factorial designs in the preparation of solid dosage forms. Part 1: effervescent acetylsalicylic acid tablets.Pharmazie. 1981;36:417–420.Google Scholar
  5. 5.
    Ar Rashid H, Heinamaki J, Antikainen OK, Yliruusi JK. Povidone and maltodextrin as binders for the preparation of drug-layered pellets based on microcrystalline cellulose beads using centrifugal granulating process.STP Pharma Sci. 2000;10:355–366.Google Scholar
  6. 6.
    Von Eggelkraut-Gottanka SG, Abu Abeb S, Müller W, Schmidt PC. Roller compaction and tabletting of St. John's wort plant dry extract using gap width and force controlled roller compactor, II: study of roller compaction variables on granule and tablet properties by a 33 factorial design.Pharm Dev Technol. 2002;7:447–455.CrossRefGoogle Scholar
  7. 7.
    Gohil UC, Podczeck F, Turnbull N. Investigations into the use of pregelatinised starch to develop powder-filled hard capsules.Int J Pharm. 2004;285:51–63.CrossRefGoogle Scholar
  8. 8.
    Khattab I, Menon A, Sakr A. A study of the effect of disintegrant distribution ratio on tablet characteristics using a central composite design.Eur J Pharm Biopharm. 1993;39:260–263.Google Scholar
  9. 9.
    Gohel MC, Panchal MK. Formulation optimization of diltiazem HCl matrix tablets containing modified guar gum using a central composite design.Pharm Pharmacol Commun. 1999;5:331–338.Google Scholar
  10. 10.
    Linden R, Ortega GG, Petrovick PR, Bassani VL. Response surface analysis applied to the preparation of tablets containing a high concentration of vegetable spray-dried extract.Drug Dev Ind Pharm. 2000;26:441–446.CrossRefGoogle Scholar
  11. 11.
    Soares LAL, Schmidt PC, González Ortega G, Petrovick PR. Efeito da Força e da Velocidade de Compressão sobre as Propriedades de Comprimidos Contendo Alta Concentração de Extrato Seco Vegetal.Acta Farm Bonaer. 2003;22:147–154.Google Scholar
  12. 12.
    Box GE, Hunter WG, Hunter JS. Response surface methods. In: Box GE, Hunter WG, Hunter JS, eds.Statistics for Experimenters. New York, NY: Wiley; 1978:510–539.Google Scholar
  13. 13.
    González AG. Optimization of pharmaceutical formulations based on response-surface experimental design.Int J Pharm. 1993;97:149–159.CrossRefGoogle Scholar
  14. 14.
    Wehrlé P, Nobelis P, Cuiné A, Stamm A. Response surface methodology: an interesting statistical tool for process optimization and validation. Example of wet granulation in a high-shear mixer.Drug Dev Ind Pharm. 1993;19:1637–1653.CrossRefGoogle Scholar
  15. 15.
    Wehrlé P, Magenheim P, Benita S. The influence of process parameters on the PLA nanoparticle size distribution evaluated by means of factorial design.Eur J Pharm Biopharm. 1995;41:19–26.Google Scholar
  16. 16.
    Myers RH, Montgomery DC.Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York, NY: Wiley; 1995.Google Scholar
  17. 17.
    Gohel MC, Patel MM, Amin AF. Development of modified release diltiazem HCl tablets using composite index to identify optimal formulation.Drug Dev Ind Pharm. 2003;29:565–574.CrossRefGoogle Scholar
  18. 18.
    Petrovick PR, Carlini E. Antiulcerogenic preparation fromMaytenus ilicifolia and obtainment process. Brazil patent PI 994 502. March 06, 1999.Google Scholar
  19. 19.
    Soares LAL, González Ortega G, Petrovick PR, Schmidt PC. Dry granulation and compression of spray-dried plant extracts.AAPS PharmSciTech. 2005; In press.Google Scholar
  20. 20.
    European Pharmacopoeia Supplement. Strasbourg, France: Council of Europe, 2001.Google Scholar
  21. 21.
    Lerk CF, Bolhuis GK, Smedema SS. Interaction of lubricants and colloidal silica during mixing with excipients.Pharm Acta Helv. 1977;52:33–39.Google Scholar
  22. 22.
    Shangraw R, Mitrevej A, Shah M. A new era of tablet disintegrant.Pharm Technol. 1980;4:49–57.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2005

Authors and Affiliations

  • Luiz Alberto Lira Soares
    • 1
    • 2
  • George González Ortega
    • 2
  • Pedro Ros Petrovick
    • 2
  • Peter Christian Schmidt
    • 3
  1. 1.Departamento de FarmáciaUFRNNatalBrazil
  2. 2.Programa de Pós-Graduação em Ciências FarmacêuticasUFRGSPorto AlegreBrazil
  3. 3.Department of Pharmaceutical TechnologyUniversity of TübingenTübingenGermany

Personalised recommendations