AAPS PharmSciTech

, Volume 5, Issue 4, pp 129–137 | Cite as

Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method

  • Hannele Eerikäinen
  • Leena Peltonen
  • Janne Raula
  • Jouni Hirvonen
  • Esko I. Kauppinen
Article

Abstract

The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type structure. Ketoprofen crystallization was observed when the amount of drug in Eudragit L nanoparticles was more than 33% (wt/wt). For Eudragit E and Eudragit RS nanoparticles, the drug acted as an effective plasticizer resulting in lowering of the glass transition of the polymer. Two factors affected the preparation of nanoparticles by the aerosol flow reactor method, namely, the solubility of the drug in the polymer matrix and the thermal properties of the resulting drug-polymer matrix.

Keywords

nanoparticles ketoprofen aerosol polymer Eudragit 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kreuter J. Nanoparticles. In: Swarbrick J, Boylan J C, eds.Encyclopedia of Pharmaceutical Technology. Vol. 10. New York, NY: Marcel Dekker, 1994:165–190.Google Scholar
  2. 2.
    Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends.Eur J Pharm Biopharm. 1995;41:2–13.Google Scholar
  3. 3.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis.Adv Drug Deliv Rev. 2002;54:631–651.CrossRefGoogle Scholar
  4. 4.
    Peltonen L, Koistinen P, Karjalainen M, Häkkinen A, Hirvonen J. The effect of cosolvents on the formulation of nanoparticles from low-molecular-weight poly(1)lactide.AAPS PharmSciTech. 2002;3:E32.CrossRefGoogle Scholar
  5. 5.
    Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet, JP. Nanocapsules as carriers for oral peptide delivery.J Control Release. 1990;13:233–239.CrossRefGoogle Scholar
  6. 6.
    Damgé C, Vranckx H, Balschmidt P, Couvreur P. Poly(alkyl cyanoacrylate) nanospheres for oral administration of insulin.J Pharm Sci. 1997;86:1403–1409.CrossRefGoogle Scholar
  7. 7.
    Chen X, Young TJ, Sarkari M, Williams RO III, Johnston KP. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution.Int J Pharm. 2002;242:3–14.CrossRefGoogle Scholar
  8. 8.
    Eerikäinen H, Kauppinen EI. Preparation of polymeric nanoparticles containing corticosteroid by a novel aerosol flow reactor method.Int J Pharm. 2003;263:69–83.CrossRefGoogle Scholar
  9. 9.
    Eerikäinen H, Kauppinen EI, Kansikas J. Polymeric drug nanoparticles prepared by an aerosol flow reactor method.Pharm Res. 2004;21:136–143.CrossRefGoogle Scholar
  10. 10.
    Shukla AJ. Polymethacrylates. In: Wade A, Weller P J, eds.Handbook of Pharmaceutical Excipients. 2nd ed. Washington, DC: American Pharmaceutical Association, Pharmaceutical Press, 1994.Google Scholar
  11. 11.
    Dittgen M, Durani M, Lehmann K. Acrylic polymers: a review of pharmaceutical applications.STP Pharma Sci. 1997;7:403–437.Google Scholar
  12. 12.
    US Pharmacopeia XXVII. <724> Drug Release. Rockville, MD: United States Pharmacopeial Convention; 2003.Google Scholar
  13. 13.
    US Pharmacopeia XXVII. <711> Dissolution. Rockville, MD: United States Pharmacopeial Convention; 2003.Google Scholar
  14. 14.
    TSI Incorporated.Model 3075/3076 Constant Output Atomizer Instruction Manual. St Paul, MN: TSI Incorporated; 2000.Google Scholar
  15. 15.
    Lefebvre AH. Atomization and sprays. In: Chigier N, ed.Combustion: An International Series New York, NY: Hemisphere Publishing Corporation; 1989.Google Scholar
  16. 16.
    Bodmeier R, Chen H. Preparation and characterization of microspheres containing the anti-inflammatory agents, indomethacin, ibuprofen, and ketoprofen.J Control Release. 1989;10:167–175.CrossRefGoogle Scholar
  17. 17.
    Habib MJ, Mesue R. Development of controlled release formulations of ketoprofen for oral use.Drug Dev Ind Pharm. 1995;21:1463–1472.CrossRefGoogle Scholar
  18. 18.
    Dubernet C, Rouland JC, Benoit JP. Ibuprofen-loaded ethylcellulose microspheres: analysis of the matrix structure by thermal analysis.J Pharm Sci. 1991;80:1029–1033.CrossRefGoogle Scholar
  19. 19.
    Palmieri GF, Bonacucina G, Di Martino P, Martelli S. Gastro-resistant microspheres containing ketoprofen.J Microencapsul. 2002;19:111–119.CrossRefGoogle Scholar
  20. 20.
    Pignatello R, Ferro M, Puglisi G. Preparation of solid dispersions of nonsteroidal anti-inflammatory drugs with acrylic polymers and studies on mechanisms of drug-polymer interactions.AAPS PharmSciTech. 2002;3:E10.CrossRefGoogle Scholar
  21. 21.
    Wunderlich B.Thermal Analysis. San Diego, CA: Academic Press, Inc; 1990.Google Scholar
  22. 22.
    Dubernet C. Thermoanalysis of microspheres.Thermochim Acta. 1995;248:259–269.CrossRefGoogle Scholar
  23. 23.
    Wu C, McGinity JW. Non-traditional plasticization of polymeric films.Int J Pharm. 1999;177:15–27.CrossRefGoogle Scholar
  24. 24.
    Wu C, McGinity JW. Influence of ibuprofen as a solid-state plasticizer in Eudragit RS 30 D on the physicochemical properties of coated beads.AAPS PharmSciTech. 2001;2:E24.CrossRefGoogle Scholar
  25. 25.
    Sancin P, Caputo O, Cavallari C, et al. Effects of ultrasound-assisted compaction on Ketoprofen/Eudragit S100 mixtures.Eur J Pharm Sci. 1999;7:207–213.CrossRefGoogle Scholar
  26. 26.
    Mura P, Faucci MT, Parrini PL, Furlanetto S, Pinzauti S. Influence of the preparation method on the physicochemical properties of ketoprofen-cyclodextrin binary systems.Int J Pharm. 1999;179:117–128.CrossRefGoogle Scholar
  27. 27.
    Lin S-Y, Liao C-M, Hsiue G-H, Liang R-C. Study of a theophylline-Eudragit L mixture using a combined system of microscopic Fourier-transform infrared spectroscopy and differential scanning calorimetry.Thermochim Acta. 1995;254:153–166.CrossRefGoogle Scholar
  28. 28.
    Lin SY, Peng RI. Solid-state interaction studies of drugs/polymers: I. Indomethacin/Eudragit E, RL or S resins.STP Pharm Sci. 1993;3:465–471.Google Scholar
  29. 29.
    Lin S-Y, Yu H-L, Li M-J. Formation of six-membere cyclic anhydrides by thermally induced intramolecular ester condensation in Eudragit E film.Polym. 1999;40:3589–3593.CrossRefGoogle Scholar
  30. 30.
    Krause H-J, Schwarz A, Rohdewald P. Polyactic acid nanoparticles, a colloidal delivery system for lipophilic drugs.Int J Pharm. 1985;27:145–155.CrossRefGoogle Scholar
  31. 31.
    Higuchi T. Mechanism of sustained-action medication.J Pharm Sci. 1963;52:1145–1149.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2004

Authors and Affiliations

  • Hannele Eerikäinen
    • 1
  • Leena Peltonen
    • 2
  • Janne Raula
    • 1
  • Jouni Hirvonen
    • 2
  • Esko I. Kauppinen
    • 1
    • 3
  1. 1.Center for New MaterialsHelsinki University of TechnologyVTTFinland
  2. 2.Faculty of Pharmacy and Viikki Drug Discovery CenterUniversity of HelsinskiHelsinkiFinland
  3. 3.Aerosol Technology GroupVTT ProcessesVTTFinland

Personalised recommendations