Skip to main content
Log in

Influence of processing-induced phase transformations on the dissolution of theophylline tablets

  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the per-formance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate »hydrate»anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolution rate was attributed to the accelerated anhydrate to hydrate transformationduring the dissolution run. Water vapor sorption studies proved to be a good predictor of powder dissolution behavior. While a decrease in crystallinity was brought about either by milling or by granulation, the effect on tablet dissolution was pronounced only in the latter. Tablet formulations prepared from the granules exhibited higher hardness, longer disintegration time, and slower dissolution than those containing the milled drug. The granules underwent plastic deformation during compression resulting in harder tablets, with delayed disintegration. The high hardness coupled with rapid anhydrate»hydrate transformationduring dissolution resulted in the formation of a hydrate layer on the tablet surface, which further delayed tablet disintegration and, consequently, dissolution. Phase transformations during processing and, more importantly, during dissolution influenced the observed dissolution rates. Product performance was a complex function of the physical state of the active and the processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shefter E, Higuchi T. Dissolution behavior of crystalline solvated and nonsolvated forms of some pharmaceuticals.J. Pharm Sci. 1963;52:781–791.

    Article  CAS  PubMed  Google Scholar 

  2. Urakami K, Shono Y, Higashi A, Umemoto K, Godo M. A novel method for estimation of transition temperature for polymorphic pairs in phamaceuticals using heat of solution and solutibility data.Chem Pharm Bull. 2002;50:263–267.

    Article  CAS  PubMed  Google Scholar 

  3. Hancock BC, Parks M. What is the true solubility advantage for amorphous pharmaceuticals?Pharm Res. 2000;17:397–404.

    Article  CAS  PubMed  Google Scholar 

  4. Elamin AA, Ahlneck C, Alderborn G, Nystrom C. Increased metastable solubility of milled griseofulvin, depending on the formation of a disordered surface structure.Int J. Pharm. 1994;111:159–170.

    Article  CAS  Google Scholar 

  5. Brittain HG, Morris KR, Bugay DE, Thakur AB, Serajuddin ATM. Solid-state NMR and IR for the analysis of pharmaceutical solids: polymorphs of fosinopril sodium.J. Pharm Biomed Anal. 1993;11:1063–1069.

    Article  CAS  PubMed  Google Scholar 

  6. Otsuka M, Matsumoto T, Kaneniwa N. Effects of the mechanical energy of multi-tableting compression on the polymorphic transformations of chlorpropamide.J. Pharm Pharmacol. 1989;41:665–669.

    Article  CAS  PubMed  Google Scholar 

  7. Phadnis NV, Suryanarayanan R. Polymorphism in anhydrous theophylline-implications on the dissolution rate of theophylline tablets.J Pharm Sci. 1997;86:1256–1263.

    Article  CAS  PubMed  Google Scholar 

  8. Alsaidan SM, Alsughayer AA, Eshra AG. Improved dissolution rate of indomethacin by adsorbents.Drug Dev Ind Pharm. 1998;24:389–394.

    Article  CAS  PubMed  Google Scholar 

  9. Osawa T, Kamat M, DeLuca P. Hygroscopicity of cefazolin sodium: Application to evaluate the crystallinity of freeze-dried products.Pharm Res. 1988;5:421–425.

    Article  CAS  PubMed  Google Scholar 

  10. Morris KR, Griesser UJ, Eckhardt CJ, Stowell JG. Theoretical approaches to physical transformations of active pharmaceutical ingredients during manufacturing processes.Adv Drug Del Rev. 2001;48:91–114.

    Article  CAS  Google Scholar 

  11. Ono M, Tozuka Y, Oguchi T, Yamamoto K. Effects of dehydration temperatures on moisture absorption and dissolution behavior of theophylline.Chem Pharm Bull. 2001;49:1526–1530.

    Article  CAS  PubMed  Google Scholar 

  12. Otsuka M, Hasegawa H, Matsuda Y. Effect of polymorphic transformation during the extrusion-granulation process on the pharmaceutical properties of carbamazepine granules.Chem Pharm Bull. 1997;45:894–898.

    Article  CAS  Google Scholar 

  13. Otsuka M, Hasegawa H, Matsuda Y. Effect of polymorphic forms of bulk powders on pharmaceutical properties of carbamazepine granules.Chem Pharm Bull. 1999;47:852–856.

    Article  CAS  Google Scholar 

  14. Adeyeye CM, Rowley J, Madu D, Javadi M, Sabnis SS. Evaluation of crystallinity and drug release stability of directly compressed theophylline hydrophilic matrix tablets stored under varied moisture conditions.Int J Pharm. 1995;116:65–75.

    Article  Google Scholar 

  15. Otsuka M, Kaneniwa N, Kawakami K, Umezawa O. Effects of tableting pressure on hydration kinetics of theophylline anhydrate tablets.J Pharm Pharmacol. 1991;43:226–231.

    Article  CAS  PubMed  Google Scholar 

  16. Debnath S, Predecki P, Suryanarayanan R. Use of glancing angle X-ray powder diffractometry to depth profile phase transformations during dissolution of indomethacin and theophylline tablets.Pharm Res. 2004;21:149–159.

    Article  CAS  PubMed  Google Scholar 

  17. Collett JH, Rees JA, Dickinson NA. Some parameters describing the dissolution rate of salicylic acid at controlled pH.J Pharm Pharmacol. 1972;24:724–728.

    Article  CAS  PubMed  Google Scholar 

  18. Doherty C, York P. Mechanisms of dissolution of frusemide/PVP solid dispersions.Int J Pharm. 1987;34:197–205.

    Article  CAS  Google Scholar 

  19. Powder Diffraction File 26-1893 (anhydrous theophylline), 27-1977 (theophylline monohydrate) International Centre for Diffraction Data, Newtown Square, Pennsylvania; 1997.

  20. Murphy DK, Rodriguez-Cintron F, Langevin B, Kelly RC, Rodriguez-Homedo N. Solution-mediated phase transformation of anhydrous to dihydrate carbamazepine and the effect of lattice disorder.Int J Pharm. 2002;246:121–134.

    Article  CAS  PubMed  Google Scholar 

  21. Sebhatu T, Ahlneck C, Alderborn G. The effect of moisture content on the compression and bond-formation properties of amorphous lactose particles.Int J Pharm. 1997;146:101–114.

    Article  CAS  Google Scholar 

  22. Suzuki T, Nakagami H. Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets.Eur J Pharm Biopharm. 1999;47:225–230.

    Article  CAS  PubMed  Google Scholar 

  23. Imaizumi H, Nambu N, Nagai T. Stability and several physical properties of amorphous and crystalline forms of indomethacin.Chem Pharm Bull. 1980;28:2565–2569.

    Article  CAS  PubMed  Google Scholar 

  24. Nakai Y, Yamamoto K, Terada K, Kajiyama A. Relationships between crystallinity of β-cyclodextrin and tablet characteristics.Chem Pharm Bull. 1985;33:5110–5112

    Article  CAS  PubMed  Google Scholar 

  25. Vromans H, Bolhuis GK, Lerk CF, Kussendrager KD. Studies on tableting properties of lactose. VIII. The effect of variations in primary particle size, percentage of amorphous lactose and addition of a disintegrant on the disintegration of spray-dried lactose tablets.Int J Pharm. 1987;39:201–206.

    Article  CAS  Google Scholar 

  26. Solvang S, Finholt P. Effect of tablet processing and formulation factors on dissolution rate of the active ingredient in human gastric juice.J Pharm Sci. 1970;59:49–52.

    Article  CAS  PubMed  Google Scholar 

  27. Huettenrauch R, Fricke S, Zielke P. Mechanical activation of pharmaceutical systems.Pharm Res. 1985;6:302–306.

    Article  Google Scholar 

  28. Sharp JH, Brindley GW, Achar BNN. Numerical data for some commonly used solids-state reaction equations.J Am Ceram Soc. 1963;52:781–791.

    Google Scholar 

  29. Ono M, Tozuka Y, Oguchi T, Yamamura S, Yamamoto K. Effects of dehydration temperature on water vapor adsorption and dissolution behavior of carbamazepine.Int J Pharm. 2002;239:1–12.

    Article  CAS  PubMed  Google Scholar 

  30. Suihko E, Lehto VP, Ketolainen, J, Laine E, Paronen, P. Dynamic solidstate and tableting properties of four theophylline forms.Int J Pharm. 2001;217:225–236.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Suryanarayanan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debnath, S., Suryanarayanan, R. Influence of processing-induced phase transformations on the dissolution of theophylline tablets. AAPS PharmSciTech 5, 8 (2004). https://doi.org/10.1208/pt050108

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/pt050108

Keywords

Navigation