AAPS PharmSciTech

, Volume 4, Issue 4, pp 549–560 | Cite as

Unilamellar vesicles as potential capreomycin sulfate carriers: Preparation and physicochemical characterization

  • Stefano Giovagnoli
  • Paolo Blasi
  • Claudia Vescovi
  • Giuseppe Fardella
  • Ione Chiappini
  • Luana Perioli
  • Maurizio Ricci
  • Carlo Rossi
Article

Abstract

The aim of this work was to evaluate unilamellar liposomes as new potential capreomycin sulfate (CS) delivery systems for future pulmonary targeting by aerosol administration. Dipalmitoylphosphatidylcholine, hydrogenated phosphatidylcholine, and distearoylphosphatidylcholine were used for liposome preparation. Peptide-membrane interaction was investigated by differential scanning calorimetry (DSC) and attenuated total internal reflection Fourier-transform infrared spectroscopy (ATIR-FTIR). Peptide entrapment, size, and morphology were evaluated by UV spectrophotometry, photocorrelation spectroscopy, and transmission electron microscopy, respectively. Interaction between CS and the outer region of the bilayer was revealed by DSC and ATIR-FTIR. DSPC liposomes showed enhanced interdigitation when the CS molar fraction was increased. Formation of a second phase on the bilayer surface was observed. From kinetic and permeability studies, CS loaded DSPC liposomes resulted more stable if compared to DPPC and HPC over the period of time investigated. The amount of entrapped peptide oscillated between 10% and 13%. Vesicles showed a narrow size distribution, from 138 to 166 nm, and a good morphology. These systems, in particular DSPC liposomes, could represent promising carriers for this peptide.

Keywords

capreomycin sulfate liposomes DSC ATIR-FTIR phase transition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maher D, Floyd K, Raviglione M. A strategic framework to decrease the burden of TB/HIV. WHO report, World Health Organization/ Communicable Disease/Tuberculosis, 2002; 296.Google Scholar
  2. 2.
    Vigorita MG, Ottana R, Zappalà C, Maccari R, Pizzimenti FC, Gabrielli G. Halogenated isoniazid derivatives as possible antimy cobacterial and anti-HIV agents-III.IL Farmaco. 1994;49:775–781.Google Scholar
  3. 3.
    Ferrarini P, Manera C, Mori C, Badawneh M, Saccomanni G. Synthesis and evaluation of antimycobacterial activity of 4-phenyl-1,8-naphthyridine derivatives.II Farmaco. 1999;53:741–746.CrossRefGoogle Scholar
  4. 4.
    Gursoy A. Liposome-encapsulated antibiotics: Physicochemical and antibacterial properties, a review.STP Pharma Sci. 2000;10(4):285–291.Google Scholar
  5. 5.
    Deol P, Khuller GK. Lung specific stealth liposomes: stability, biodistribution and toxicity of liposomal antitubercular drugs in mice.Biochim Biophys Acta 1997;1334:161–172.Google Scholar
  6. 6.
    Pinto-Alphandary H, Andremont A, Couvreur P. Targeted delivery antibiotics using liposomes and nanoparticles: research and applications.Int J Antimicrob Agents. 2000;13:155–168.CrossRefGoogle Scholar
  7. 7.
    Le Conte P, Le Gallou F, Potel G, Struillou L, Baron D, Drugeon HB. Pharmacokinetics, toxicity, and efficacy of liposomal capreomycin in disseminatedMycobacterium avium beige mouse model.Antimicrob Agents Chemother. 1994;38:2695–2701.Google Scholar
  8. 8.
    Martindale the Extra Pharmacopoeia. Capreomycin sulfate (7554-1).The Complete Drug Reference—Monographs. 3 2nd ed. Parfitt K editor, The Pharmaceutical Press, London, UK; 1997:162.Google Scholar
  9. 9.
    Fattorini L, Iona E, Ricci ML, Thoresen OF, Orru G, Oggioni MR, Tortoli E, Piersimoni C, Chiaradonna P, Tronci M, Pozzi G, Orefici G. Activity of 16 antimicrobial agents against drug-resistant strains of Mycobacterium tuberculosis.Microb Drug Resist. 1999;5:265–270.CrossRefGoogle Scholar
  10. 10.
    Farr SJ, Kellaway IW, Perry-Jones DR, Woolfrey SG. 99-m Technetium as a marker of liposomal deposition and clearance in the human lung.Int J Pharm. 1985;26:303–316.CrossRefGoogle Scholar
  11. 11.
    Gilbert BE, Six HR, Wilson SZ, Wyde PR, Knight V. Small particle aerosols of enviroxime-containing liposomes.J Antiviral Res. 1988;9:355–365.CrossRefGoogle Scholar
  12. 12.
    Niven RW, Schreier H. Nebulization of liposomes, I: effects of lipid composition.Pharm Res. 1990;7:1127–1133.CrossRefGoogle Scholar
  13. 13.
    Schreier H, Gonzalez-Rothi RJ, Steceko AA. Pulmonary delivery of liposomes.J Control Release. 1993;24:209–223.CrossRefGoogle Scholar
  14. 14.
    Taylor KMG, Farr SJ. Liposomes for delivery to the respiratory tract.Drug Dev Ind Pharm. 1993;19:123–142.CrossRefGoogle Scholar
  15. 15.
    Hung OR, Whynot SC, Varnel JR, Shafer SL, Mezel M. Pharmacokinetics of inhaled liposome encapsulated fentanyl.Anesthesiology. 1995;83:277–284.CrossRefGoogle Scholar
  16. 16.
    Patton JS, Platz RM. Pulmonary delivery of peptides and proteins for systemic action.Adv Drug Deliv Rev. 1992;8:179–196.CrossRefGoogle Scholar
  17. 17.
    Niven RW, Speer M, Schreier H. Nebulization of liposomes, II: the effects of size and modelling of solute release profiles.Pharm Res. 1991;8:2 217–221.CrossRefGoogle Scholar
  18. 18.
    Mayer LD, Hope MJ, Cullis PR. Vesicles of variable, sizes produced by a rapid extrusion procedure.Biochim Biophys Acta. 1986:858:161–168.CrossRefGoogle Scholar
  19. 19.
    Sivakuma PA, Panduranga KR. Development of stable polymerized vinyl-pyrrolidone cholesteryl methacrylate liposomes as carriers for drug delivery.Biomed Microdev. 2002;4:3, 197–204.CrossRefGoogle Scholar
  20. 20.
    Moscho A, Orwar O, Chiu DT, Modi BP, Zare RN. Rapid preparation of giant unilamellar vesicles.Proc Natl Acad Sci USA. 1996;93:11443–11447.CrossRefGoogle Scholar
  21. 21.
    Goormaghtigh E, Raussens V, Ruysschaert JM. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes.Biochim Biophys Acta 1999;1422:105–185.Google Scholar
  22. 22.
    Jain MK. Order and dynamics in bilayers and solute in bilayers. In: Jain MK, ed.Introduction to Biological Membranes. New York, NY: Wiley, 1988:122–165.Google Scholar
  23. 23.
    Taylor KMG, Morris RM. Thermal analysis of phase transition behaviour in liposomes.Thermochim Acta. 1995;248:289–301.CrossRefGoogle Scholar
  24. 24.
    Weers JG, Scheuing DR. Characterization of viscoelatic surfactant mixtures, I: Fourier transform infrared spectroscopic studies.Colloids Surf. B: Biointerfaces, 1991;55:41–56.Google Scholar
  25. 25.
    Fringeli UP, Guenthard HH. Infrared membrane spectroscopy.Mol Biol Biochem Biophys. 1981;31:270–332.Google Scholar
  26. 26.
    Guenzler H, Boeck H.IR Spectroscopy. An Introduction. 2nd ed. Weinheim, Germany: Verlag Chemie, 1983:403. (In German).Google Scholar
  27. 27.
    Silvestro L, Axelsen PH. Infrared spectroscopy of supported lipid monolayer, bilayer, multibilayer membranes.Chem Phys Lipids. 1998;96:69–80.CrossRefGoogle Scholar
  28. 28.
    Attar M, Wong PTT, Kates M, Carrier D, Jaklis P, Tanphaichitr N. Interaction between sulfogalactosylceramide and dimyristoylphosphatidylcholine increases the orientational fluctuation of their lipid hydrocarbon chains.Chem Phys, Lipids. 1998;94:227–238.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2003

Authors and Affiliations

  • Stefano Giovagnoli
    • 1
  • Paolo Blasi
    • 1
  • Claudia Vescovi
    • 1
  • Giuseppe Fardella
    • 1
  • Ione Chiappini
    • 1
  • Luana Perioli
    • 1
  • Maurizio Ricci
    • 1
  • Carlo Rossi
    • 1
  1. 1.Department of Chemistry and Technology of DrugsUniversità degli Studi di PerugiaPerugiaItaly

Personalised recommendations