Advertisement

AAPS PharmSciTech

, Volume 4, Issue 3, pp 116–123 | Cite as

Optimizing the crystal size and habit of β-sitosterol in suspension

  • Anna von Bonsdorff-Nikander
  • Jukka Rantanen
  • Leena Christiansen
  • Jouko Yliruusi
Article

Abstract

The aim of this work was to survey how processing parameters affect the crystal growth of β-sitosterol in suspension. The process variables studied were the cooling temperature, stirring time and stirring rate during recrystallization. In addition, we investigated the effect a commonly used surfactant, polysorbate 80, has on crystal size distribution and the polymorphic form. This study describes the optimization of the crystallization process, with the object of preparing crystals as small as possible. Particle size distribution and habit were analyzed using optical microscopy, and the crystal structure was analyzed using X-ray diffractometry. The cooling temperature had a remarkable influence on the crystal size. Crystals with a median crystal length of ≈23 μm were achieved with a low cooling temperature (<10°C); however, a fairly large number of crystals over 50 μm appeared. Higher cooling temperatures (>30°C) caused notable crystal growth both in length and width. Rapid (250 rpm), continuous stirring until the suspensions had cooled to room temperature created small, less than 50 μm long (median <20 μm), needle-shaped crystals. The addition of surfactant slightly reduced the size of the initially large crystals. Both hemihydrate and monohydrate crystal forms occurred throughout, regardless of the processing parameters. By using an optimized process, it was possible to obtain a microcrystalline suspension, with a smooth texture.

Keywords

β-sitosterol microcrystalline crystal habit crystal size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mackellar AJ, Buckton G, Newton JM, Chowdhry BZ, Orr CA. The controlled crystallisation of a model powder. I. The effects of altering the stirring rate and the supersaturation profile and the incorporation of a surfactant (Poloxamer 188). Int J Pharm. 1994;112:65–78.CrossRefGoogle Scholar
  2. 2.
    Mullin JW. Crystallization. Oxford, UK: Butterworth-Heinemann; 2000.Google Scholar
  3. 3.
    Florence AT, Attwood D. Physicochemical Principles of Pharmacy. Basingstoke, UK: Macmillan Press Ltd, 1998.Google Scholar
  4. 4.
    Myerson AS, Ginde R. Crystals, crystal growth and nucleation. In: Handbook of Industrial Crystallization. St Louis, MO: Butterworth-Heinemann; 1993:33–63.Google Scholar
  5. 5.
    Boistelle R, Astier JP. Crystallization mechanisms in solution. J Cryst Growth. 1988;90:14–30.CrossRefGoogle Scholar
  6. 6.
    Schüth F. Nucleation and crystallization of solids from solutions. Curr Opin Solid State Mater Sci. 2001;5:389–395.CrossRefGoogle Scholar
  7. 7.
    Zipp GL, Rodriguez-Hornedo N. The mechanism of phenytoin crystal growth. Int J Pharm. 1993;98:189–201.CrossRefGoogle Scholar
  8. 8.
    Sunada H, Yamamoto A, Otsuka A, Yonezawa Y. Changes of surface area in the dissolution process of crystalline substances. Chem Pharm Bull. 1987;36(7):2557–2561.Google Scholar
  9. 9.
    Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.CrossRefGoogle Scholar
  10. 10.
    Rasenack N, Hartenhauer H, Müller BW. Microcrystals for dissolution rate enhancement of poorly water-soluble drugs. Int J Pharm. 2003;254:137–145.CrossRefGoogle Scholar
  11. 11.
    Liversidge GG, Cundy KC. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm. 1995;125:91–97.CrossRefGoogle Scholar
  12. 12.
    Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci. 2003;18:113–120.CrossRefGoogle Scholar
  13. 13.
    Mattson GM, Volpenheim FA, Erickson BA. Effect of plant sterol esters on the absorption of dietary cholesterol. J Nutr. 1997;107:1139–1146.Google Scholar
  14. 14.
    Christiansen LI, Rantanen JT, von Bonsdorff AK, Karjalainen MA, Yliruusi JK. A novel method of producing a microcrystalline β-sitosterol suspension in oil. Eur J Pharm Sci. 2001;15:261–269.CrossRefGoogle Scholar
  15. 15.
    Christiansen LI, Lähteenmäki PLA, Mannelin MR, Seppänen-Laakso TE, Hiltunen RVK, Yliruusi JK. Cholesterol-lowering effect of spreads enriched with microcrystalline plant sterols in hypercholesterolemic subjects. Eur J Nutr. 2001;40:66–73.CrossRefGoogle Scholar
  16. 16.
    von Bonsdorff-Nikander A, Karjalainen M, Rantanen J, Christiansen L, Yliruusi J. Physical stability of a microcrystalline β-sitosterol suspension in oil. Eur J Pharm Sci. 2003;19:173–179.CrossRefGoogle Scholar
  17. 17.
    Jones AG, Mullin JW. Programmed cooling crystallization of potassium sulphate solutions. Chem Eng Sci. 1974;29:105–118.CrossRefGoogle Scholar
  18. 18.
    Mullin JW, Raven KD. Nucleation in agitated solutions. Nature. 1961;190:251.CrossRefGoogle Scholar
  19. 19.
    Dogua J, Simon B. Crystallization of sodium perborate from aqueous solution. J Cryst Growth. 1978;44:265–279.CrossRefGoogle Scholar
  20. 20.
    Viaene J, Januszewska R. Quality function deployment in the chocolate industry. Food Quality and Preference. 1999;10:377–385.CrossRefGoogle Scholar
  21. 21.
    Tyle P. Effect of size, shape and hardness of particles in suspension on oral texture and palatability. Acta Psychologica. 1993;84:111–118.CrossRefGoogle Scholar
  22. 22.
    Mazzarotta B, Si Cave S, Bonifazi G. Influence of time on crystal attrition in a stirred vessel. AIChE J. 1996;42(12):3554–3558.CrossRefGoogle Scholar
  23. 23.
    Gibaldi M. Biopharmaceutics. In: Lachman L, Lieberman HA, Kanig JL, eds. The Theory and Practice of Industrial Pharmacy. 2nd ed. Philadelphia, PA. Lea & Febiger; 1976: 78–140.Google Scholar
  24. 24.
    Bisrat M, Nyström C. Physicochemical aspects of drug release. VIII. The relation between particle size and surface specific dissolution rate in agitated suspensions. Int J Pharm. 1988;47:223–231.CrossRefGoogle Scholar
  25. 25.
    Anderberg EK, Bisrat M, Nyström C. Physicochemical aspects of drug release. VII. The effect of surfactant concentration and drug particle size on solubility and dissolution rate of felodipine, a sparingly soluble drug. Int J Pharm. 1988;47:67–77.CrossRefGoogle Scholar
  26. 26.
    Rauls M, Bartosch K, Kind M, Kuch S, Racmann R, Mersmann A. The influence of impurities on crystallization kinetics—a case study on ammonium sulfate. J Cryst Growth. 2000;213:116–128.CrossRefGoogle Scholar
  27. 27.
    El-Bary AA, Kassem MAA, Foda N, Travel S, Badawi SS. Controlled crystallization of chlorpropamide from surfactant and polymer solutions. Drug Dev Ind Pharm. 1990;16(10):1649–1660.CrossRefGoogle Scholar
  28. 28.
    Mackellar AJ, Buckton G, Newton JM, Orr CA. The controlled crystallization of a model powder. II. Investigation into the mechanism of action of poloxamers in changing crystal properties. Int J Pharm. 1994;112:79–85.CrossRefGoogle Scholar
  29. 29.
    Kim CA, Choi HK. Effect of additives on the crystallization and the permeation of ketoprofen from adhesive matrix. Int J Pharm. 2002;236:81–85.Google Scholar
  30. 30.
    Luhtala S. Effect of sodium lauryl sulphate and polysorbate 80 on crystal growth and aqueous solubility of carbamazepine. Acta Pharm Nord. 1992;4(2):85–90.Google Scholar
  31. 31.
    Canselier JP. The effects of surfactants on crystallization phenomena. J Dispersion Sci Technol. 1993;14(6):625–644.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2003

Authors and Affiliations

  • Anna von Bonsdorff-Nikander
    • 1
  • Jukka Rantanen
    • 2
  • Leena Christiansen
    • 1
  • Jouko Yliruusi
    • 1
    • 2
  1. 1.Technology Division, Department of PharmacyUniversity of HelsinkiFinland
  2. 2.Viikki Drug Discovery Technology Center (DDTC)University of HelsinkiFinland

Personalised recommendations