Skip to main content
Log in

Protein binding predictions in infants

  • Published:
AAPS PharmSci Aims and scope Submit manuscript

Abstract

Plasma binding protein levels are lower in the newborn than in the adult and gradually increase with age. At birth, human serum albumin (HSA) concentrations are close to adult levels (75%–80%), while alpha 1-acid glycoprotein (AAG) is initially half the adult concentration. As a result, the extent of drug binding to HSA is closer to that of the adult than are those drugs bound largely to AAG. A model that incorporates the fraction unbound in adults and the ratio of the binding protein concentration between infants and adults successfully predicted the fraction unbound in infants and children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcorn J, McNamara PJ. The ontogeny of hepatic and renal systemic clearance pathways in infants: a review (Part I). Clin Pharmacokinet. In press.

  2. Alcorn J, McNamara PJ. The ontogeny of hepatic and renal systemic clearance pathways in infants: model predictions (Part II). Clin Pharmacokinet. In press.

  3. Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta. 1999;1441(2–3):131–140.

    Article  CAS  PubMed  Google Scholar 

  4. Fournier T, Medjoubi NN, Porquet D. Alpha 1-acid glycoprotein. Biochim Biophys Acta. 2000;1482(1–2):157–171.

    Article  CAS  PubMed  Google Scholar 

  5. Kremer JM, Wilting J, Janssen LH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev. 1988;40(1):1–47.

    CAS  PubMed  Google Scholar 

  6. Muller WE. Drug binding sites on human alpha-1-acid glycoprotein. Prog Clin Biol Res. 1989;300:363–378.

    CAS  PubMed  Google Scholar 

  7. Routledge PA. Clinical relevance of alpha 1 acid glycoprotein in health and disease. Prog Clin Biol Res. 1989;300:185–198.

    CAS  PubMed  Google Scholar 

  8. Eap CB, Baumann P. The genetic polymorphism of human alpha 1-acid glycoprotein. Prog Clin Biol Res. 1989;300:111–125.

    CAS  PubMed  Google Scholar 

  9. Herve F, Gomas E, Duche JC, Tillement JP. Fractionation of the genetic variants of human alpha 1-acid glycoprotein in the native form by chromatography on an immobilized copper(II) affinity adsorbent. Heterogeneity of the separate variants by isoelectrofocusing and by concanavalin A affinity chromatography. J Chromatogr. 1993;615(1):47–57.

    Article  CAS  PubMed  Google Scholar 

  10. Herve F, Gomas E, Duche JC, Tillement JP. Evidence for differences in the binding of drugs to the two main genetic variants of human alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1993;36(3):241–249.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Herve F, Duche JC, d Athis P, Marche C, Barre J, Tillement JP. Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996;6(5):403–415.

    Article  CAS  PubMed  Google Scholar 

  12. Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–390.

    CAS  PubMed  Google Scholar 

  13. Pang KS, Rowland M. Hepatic clearance of drugs: I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model, influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm. 1977;5(6):625–653.

    Article  CAS  PubMed  Google Scholar 

  14. Herngren L, Ehrnebo M, Boreus LO. Drug binding to plasma proteins during human pregnancy and in the perinatal period: studies on cloxacillin and alprenolol. Dev Pharmacol Ther. 1983;6(2):110–124.

    CAS  PubMed  Google Scholar 

  15. Colon AR. Textbook of Pediatric Hepatology. 2nd ed. Chicago, IL: Year Book Medical Publishers; 1990:31.

    Google Scholar 

  16. Asali LA, Brown KF. Naloxone protein binding in adult and foetal plasma. Eur J Clin Pharmacol. 1984;27(4):459–463.

    Article  CAS  PubMed  Google Scholar 

  17. Pacifici GM, Viani A, Taddeucci-Brunelli G, Rizzo G, Carrai M, Schulz HU. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and alpha 1-acid glycoprotein: implications for binding of drugs. Ther Drug Monit. 1986;8(3):259–263.

    Article  CAS  PubMed  Google Scholar 

  18. Kanakoudi F, Drossou V, Tzimouli V, et al. Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin Chem. 1995;41(4):605–608.

    CAS  PubMed  Google Scholar 

  19. Kurz H, Mauser-Ganshorn A, Stickel HH. Differences in the binding of drugs to plasma proteins from newborn and adult man: I. Eur J Clin Pharmacol. 1977;11(6):463–467.

    Article  CAS  PubMed  Google Scholar 

  20. Kingston HG, Kendrick A, Sommer KM, Olsen GD, Downes H. Binding of thiopental in neonatal serum. Anesthesiology. 1990;72(3): 428–431.

    Article  CAS  PubMed  Google Scholar 

  21. Notarianni LJ. Plasma protein binding of drugs in pregnancy and in neonates. Clin Pharmacokinet. 1990;18(1):20–36.

    Article  CAS  PubMed  Google Scholar 

  22. Bardy AH, Hiilesmaa VK, Teramo K, Neuvonen PJ. Protein binding of antiepileptic drugs during pregnancy, labor, and puerperium. Ther Drug Monit. 1990;12(1):40–46.

    Article  CAS  PubMed  Google Scholar 

  23. Lerman J, Strong HA, LeDez KM, Swartz J, Rieder MJ, Burrows FA. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46(2):219–225.

    Article  CAS  PubMed  Google Scholar 

  24. Wood M, Wood AJ. Changes in plasma drug binding and alpha 1-acid glycoprotein in mother and newborn infant. Clin Pharmacol Ther. 1981;29(4):522–526.

    Article  CAS  PubMed  Google Scholar 

  25. Kurz H, Michels H, Stickel HH. Differences in the binding of drugs to plasma proteins from newborn and adult man: II. Eur J Clin Pharmacol. 1977;11(6):469–472.

    Article  CAS  PubMed  Google Scholar 

  26. Ehrnebo M, Agurell S, Jalling B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–193.

    Article  CAS  PubMed  Google Scholar 

  27. Nau H, Luck W, Kuhnz W. Decreased serum protein binding of diazepam and its major metabolite in the neonate during the first postnatal week relate to increased free fatty acid levels. Br J Clin Pharmacol. 1984;17(1):92–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Brodersen R, Robertson A. Ceftriaxone binding to human serum albumin: competition with bilirubin. Mol Pharmacol. 1989;36(3):478–483.

    CAS  PubMed  Google Scholar 

  29. Pacifici GM, Viani A, Taddeucci-Brunelli G. Serum protein binding of furosemide in newborn infants and children. Dev Pharmacol Ther. 1987;10(6):413–421.

    CAS  PubMed  Google Scholar 

  30. Echizen H, Nakura M, Saotome T, Minoura S, Ishizaki T. Plasma protein binding of disopyramide in pregnant and postpartum women, and in neonates and their mothers. Br J Clin Pharmacol. 1990;29(4):423–430.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Pacifici GM, Taddeucci-Brunelli G, Rane A. Clonazepam serum protein binding during development. Clin Pharmacol Ther. 1984;35(3):354–359.

    Article  CAS  PubMed  Google Scholar 

  32. Schaad UB, Hayton WL, Stoeckel K. Single-dose ceftriaxone kinetics in the newborn. Clin Pharmacol Ther. 1985;37(5):522–528.

    Article  CAS  PubMed  Google Scholar 

  33. Benson JM, Boudinot FD, Pennell AT, Cunningham FE, DiPiro JT. In vitro protein binding of cefonicid and cefuroxime in adult and neonatal sera. Antimicrob Agents Chemother 1993;37(6):1343–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Brodersen R, Honore B. Drug binding properties of neonatal albumin. Acta Paediatr Scand. 1989;78(3):342–346.

    Article  CAS  PubMed  Google Scholar 

  35. Belpaire FM, Wynant P, Van Trappen P, Dhont M, Verstraete A, Bogaert MG. Protein binding of propranolol and verapamil enantiomers in maternal and foetal serum. Br J Clin Pharmacol. 1995;39(2):190–193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hamar C, Levy G. Factors affecting the serum protein binding of salicylic acid in newborn infants and their mothers. Pediatr Pharmacol. 1980;1(1):31–43.

    CAS  Google Scholar 

  37. Wilson AS, Stiller RL, Davis PJ, et al. Fentanyl and alfentanil plasma protein binding in preterm and term neonates. Anesth Analg. 1997;84(2):315–318.

    CAS  PubMed  Google Scholar 

  38. Meuldermans W, Woestenborghs R, Noorduin H, Camu F, van Steenberge A, Heykants J. Protein binding of the analgesics alfentanil and sufentanil in maternal and neonatal plasma. Eur J Clin Pharmacol. 1986;30(2):217–219.

    Article  CAS  PubMed  Google Scholar 

  39. Bodenham A, Park GR. Alfentanil infusions in patients requiring intensive care. Clin Pharmacokinet. 1988;15(4):216–226.

    Article  CAS  PubMed  Google Scholar 

  40. Olkkola KT, Hamunen K, Maunuksela EL. Clinical pharmacokinetics and pharmacodynamics of opioid analgesics in infants and children. Clin Pharmacokinet. 1995;28(5):385–404.

    Article  CAS  PubMed  Google Scholar 

  41. Furst DE, Tozer TN, Melmon KL. Salicylate clearance, the resultant of protein binding and metabolism. Clin Pharmacol Ther. 1979;26(3):380–389.

    CAS  PubMed  Google Scholar 

  42. Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet. 1990;18(5):346–364.

    Article  CAS  PubMed  Google Scholar 

  43. Siddoway LA, Woosley RL. Clinical pharmacokinetics of disopyramide. Clin Pharmacokinet. 1986;11(3):214–222.

    Article  CAS  PubMed  Google Scholar 

  44. Nattel S, Gagne G, Pineau M. The pharmacokinetics of lignocaine and beta-adrenoceptor antagonists in patients with acute myocardial infarction. Clin Pharmacokinet. 1987;13(5):293–316.

    Article  CAS  PubMed  Google Scholar 

  45. Kearns GL, Kemp SF, Turley CP, Nelson DL. Protein binding of phenytoin and lidocaine in pediatric patients with type I diabetes mellitus. Dev Pharmacol Ther. 1988;11(1):14–23.

    CAS  PubMed  Google Scholar 

  46. Handal KA, Schauben JL, Salamone FR. Naloxone. Ann Emerg Med. 1983;12(7):438–445.

    Article  CAS  PubMed  Google Scholar 

  47. Bendayan R, Pieper JA, Stewart RB, Caranasos GJ. Influence of age on serum protein binding of propranolol. Eur J Clin Pharmacol. 1984;26(2):251–254.

    Article  CAS  PubMed  Google Scholar 

  48. Colangelo PM, Blouin RA, Steinmetz JE, McNamara PJ, DeMaria AN, Wedlund PJ. Age and propranolol stereoselective disposition in humans. Clin Pharmacol Ther. 1992;51(5):489–494.

    Article  CAS  PubMed  Google Scholar 

  49. Pickoff AS, Kessler KM, Singh S, et al. Age-related differences in the protein binding of quinidine. Dev Pharmacol Ther. 1981;3(2):108–115.

    CAS  PubMed  Google Scholar 

  50. Verme CN, Ludden TM, Clementi WA, Harris SC. Pharmacokinetics of quinidine in male patients: a population analysis. Clin Pharmacokinet. 1992;22(6):468–480. [Published erratum appears in Clin Pharmacokinet. 1992;23(1):68.]

    Article  CAS  PubMed  Google Scholar 

  51. Meistelman C, Benhamou D, Barre J, et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology. 1990;72(3):470–473.

    Article  CAS  PubMed  Google Scholar 

  52. Bovill JG, Sebel PS, Blackburn CL, Oei-Lim V, Heykants JJ. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology. 1984;61(5):502–506.

    Article  CAS  PubMed  Google Scholar 

  53. McTavish D, Sorkin EM. Verapamil: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drugs. 1989;38(1):19–76.

    Article  CAS  PubMed  Google Scholar 

  54. Ehrnebo M, Nilsson SO, Boreus LO. Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man. J Pharmacokinet Biopharm. 1979;7(5):429–451.

    Article  CAS  PubMed  Google Scholar 

  55. Kentala E, Kaila T, Iisalo E, Kanto J. Intramuscular atropine in healthy volunteers: a pharmacokinetic and pharmacodynamic study. Int J Clin Pharmacol Ther Toxicol. 1990;28(9):399–404.

    CAS  PubMed  Google Scholar 

  56. Kuhnz W, Steldinger R, Nau H. Protein binding of carbamazepine and its epoxide in maternal and fetal plasma at delivery: comparison to other anticonvulsants. Dev Pharmacol Ther. 1984;7(1):61–72.

    CAS  PubMed  Google Scholar 

  57. Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide: an update. Clin Pharmacokinet. 1986;11(3):177–198.

    Article  CAS  PubMed  Google Scholar 

  58. Ambrose PJ. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin Pharmacokinet. 1984;9(3):222–238.

    Article  CAS  PubMed  Google Scholar 

  59. Greenblatt DJ, Shader RI, MacLeod SM, Sellers EM. Clinical pharmacokinetics of chlordiazepoxide. Clin Pharmacokinet. 1978;3(5):381–394.

    Article  CAS  PubMed  Google Scholar 

  60. Zemlickis D, Klein J, Moselhy G, Koren G. Cisplatin protein binding in pregnancy and the neonatal period. Med Pediatr Oncol. 1994;23(6):476–479.

    Article  CAS  PubMed  Google Scholar 

  61. Berlin A, Dahistrom H. Pharmacokinetics of the anticonvulsant drug clonazepam evaluated from single oral and intravenous doses and by repeated oral administration. Eur J Clin Pharmacol. 1975;9(2–3):155–159.

    Article  CAS  PubMed  Google Scholar 

  62. Spino M, Chai RP, Isles AF, et al. Cloxacillin absorption and disposition in cystic fibrosis. J Pediatr. 1984;105(5):829–835.

    Article  CAS  PubMed  Google Scholar 

  63. Greenblatt DJ, Allen MD, Harmatz JS, Shader RI. Diazepam disposition determinants. Clin Pharmacol Ther. 1980;27(3):301–312.

    Article  CAS  PubMed  Google Scholar 

  64. Mooradian AD. Digitalis: an update of clinical pharmacokinetics, therapeutic monitoring techniques and treatment recommendations. Clin Pharmacokinet. 1988;15(3):165–179.

    Article  CAS  PubMed  Google Scholar 

  65. Herve F, Duche JC, d Athis P, Marche C, Barre J, Tillement JP. Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996;6(5):403–415.

    Article  CAS  PubMed  Google Scholar 

  66. Gorodischer R, Krasner J, Yaffe SJ. Serum protein binding of digoxin in newborn infants. Res Commun Chem Pathol Pharmacol. 1974;9(2):387–390.

    CAS  PubMed  Google Scholar 

  67. Hammarlund-Udenaes M, Benet LZ. Furosemide pharmacokinetics and pharmacodynamics in health and disease-an update. J Pharmacokinet Biopharm. 1989;17(1):1–46.

    Article  CAS  PubMed  Google Scholar 

  68. Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit. 1991;13(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  69. Hoener B, Patterson SE. Nitrofurantoin disposition. Clin Pharmacol Ther. 1981;29(6):808–816.

    Article  CAS  PubMed  Google Scholar 

  70. Browne TR, Evans JE, Szabo GK, Evans BA, Greenblatt DJ. Studies with stable isotopes: II. Phenobarbital pharmacokinetics during monotherapy. J Clin Pharmacol. 1985;25(1):51–58.

    Article  CAS  PubMed  Google Scholar 

  71. Loughnan PM, Greenwald A, Purton WW, Aranda JV, Watters G, Neims AH. Pharmacokinetic observations of phenytoin disposition in the newborn and young infant. Arch Dis Child. 1977;52(4):302–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Levine M, Chang T. Therapeutic drug monitoring of phenytoin: rationale and current status. Clin Pharmacokinet. 1990;19(5):341–358.

    Article  CAS  PubMed  Google Scholar 

  73. Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology. 1985;62(6):714–724.

    Article  CAS  PubMed  Google Scholar 

  74. Sorbo S, Hudson RJ, Loomis JC. The pharmacokinetics of thiopental in pediatric surgical patients. Anesthesiology. 1984;61(6):666–670.

    Article  CAS  PubMed  Google Scholar 

  75. Fisher DM, O Keeffe C, Stanski DR, Cronnelly R, Miller RD, Gregory GA. Pharmacokinetics and pharmacodynamics of d-tubocurarine in infants, children, and adults. Anesthesiology. 1982;57(3):203–208.

    Article  CAS  PubMed  Google Scholar 

  76. Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drugs in paediatric patients: Part I. Phenobarbital, primidone, valproic acid, ethosuximide and mesuximide. Clin Pharmacokinet. 1995;29(4):257–286.

    Article  CAS  PubMed  Google Scholar 

  77. Nau H, Rating D, Koch S, Hauser I, Helge H. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mothers milk and clinical status in neonates of epileptic mothers. J Pharmacol Exp Ther. 1981;219(3):768–777.

    CAS  PubMed  Google Scholar 

  78. Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid—1988. Clin Pharmacokinet. 1988;15(6):367–389.

    Article  CAS  PubMed  Google Scholar 

  79. Hayton WL, Stoeckel K. Age-associated changes in ceftriaxone pharmacokinetics. Clin Pharmacokinet. 1986;11(1):76–86.

    Article  CAS  PubMed  Google Scholar 

  80. Yuk JH, Nightingale CH, Quintiliani R. Clinical pharmacokinetics of ceftriaxone. Clin Pharmacokinet. 1989;17(4):223–235.

    Article  CAS  PubMed  Google Scholar 

  81. Herngren L, Lundberg B, Nergardh A. Pharmacokinetics of total and free valproic acid during monotherapy in infants. J Neurol. 1991;238(6):315–319.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. McNamara.

Additional information

Published: March 28, 2002

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNamara, P.J., Alcorn, J. Protein binding predictions in infants. AAPS PharmSci 4, 3 (2002). https://doi.org/10.1208/ps040104

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/ps040104

KeyWords

Navigation