Advertisement

AAPS PharmSci

, Volume 4, Issue 1, pp 19–26 | Cite as

Protein binding predictions in infants

Article

Abstract

Plasma binding protein levels are lower in the newborn than in the adult and gradually increase with age. At birth, human serum albumin (HSA) concentrations are close to adult levels (75%–80%), while alpha 1-acid glycoprotein (AAG) is initially half the adult concentration. As a result, the extent of drug binding to HSA is closer to that of the adult than are those drugs bound largely to AAG. A model that incorporates the fraction unbound in adults and the ratio of the binding protein concentration between infants and adults successfully predicted the fraction unbound in infants and children.

KeyWords

plasma protein binding fraction unbound infants children newborn albumin alpha 1-acid glycoprotein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alcorn J, McNamara PJ. The ontogeny of hepatic and renal systemic clearance pathways in infants: a review (Part I). Clin Pharmacokinet. In press.Google Scholar
  2. 2.
    Alcorn J, McNamara PJ. The ontogeny of hepatic and renal systemic clearance pathways in infants: model predictions (Part II). Clin Pharmacokinet. In press.Google Scholar
  3. 3.
    Curry S, Brick P, Franks NP. Fatty acid binding to human serum albumin: new insights from crystallographic studies. Biochim Biophys Acta. 1999;1441(2–3):131–140.PubMedCrossRefGoogle Scholar
  4. 4.
    Fournier T, Medjoubi NN, Porquet D. Alpha 1-acid glycoprotein. Biochim Biophys Acta. 2000;1482(1–2):157–171.PubMedCrossRefGoogle Scholar
  5. 5.
    Kremer JM, Wilting J, Janssen LH. Drug binding to human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev. 1988;40(1):1–47.PubMedGoogle Scholar
  6. 6.
    Muller WE. Drug binding sites on human alpha-1-acid glycoprotein. Prog Clin Biol Res. 1989;300:363–378.PubMedGoogle Scholar
  7. 7.
    Routledge PA. Clinical relevance of alpha 1 acid glycoprotein in health and disease. Prog Clin Biol Res. 1989;300:185–198.PubMedGoogle Scholar
  8. 8.
    Eap CB, Baumann P. The genetic polymorphism of human alpha 1-acid glycoprotein. Prog Clin Biol Res. 1989;300:111–125.PubMedGoogle Scholar
  9. 9.
    Herve F, Gomas E, Duche JC, Tillement JP. Fractionation of the genetic variants of human alpha 1-acid glycoprotein in the native form by chromatography on an immobilized copper(II) affinity adsorbent. Heterogeneity of the separate variants by isoelectrofocusing and by concanavalin A affinity chromatography. J Chromatogr. 1993;615(1):47–57.PubMedCrossRefGoogle Scholar
  10. 10.
    Herve F, Gomas E, Duche JC, Tillement JP. Evidence for differences in the binding of drugs to the two main genetic variants of human alpha 1-acid glycoprotein. Br J Clin Pharmacol. 1993;36(3):241–249.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Herve F, Duche JC, d Athis P, Marche C, Barre J, Tillement JP. Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996;6(5):403–415.PubMedCrossRefGoogle Scholar
  12. 12.
    Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–390.PubMedGoogle Scholar
  13. 13.
    Pang KS, Rowland M. Hepatic clearance of drugs: I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model, influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J Pharmacokinet Biopharm. 1977;5(6):625–653.PubMedCrossRefGoogle Scholar
  14. 14.
    Herngren L, Ehrnebo M, Boreus LO. Drug binding to plasma proteins during human pregnancy and in the perinatal period: studies on cloxacillin and alprenolol. Dev Pharmacol Ther. 1983;6(2):110–124.PubMedGoogle Scholar
  15. 15.
    Colon AR. Textbook of Pediatric Hepatology. 2nd ed. Chicago, IL: Year Book Medical Publishers; 1990:31.Google Scholar
  16. 16.
    Asali LA, Brown KF. Naloxone protein binding in adult and foetal plasma. Eur J Clin Pharmacol. 1984;27(4):459–463.PubMedCrossRefGoogle Scholar
  17. 17.
    Pacifici GM, Viani A, Taddeucci-Brunelli G, Rizzo G, Carrai M, Schulz HU. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and alpha 1-acid glycoprotein: implications for binding of drugs. Ther Drug Monit. 1986;8(3):259–263.PubMedCrossRefGoogle Scholar
  18. 18.
    Kanakoudi F, Drossou V, Tzimouli V, et al. Serum concentrations of 10 acute-phase proteins in healthy term and preterm infants from birth to age 6 months. Clin Chem. 1995;41(4):605–608.PubMedGoogle Scholar
  19. 19.
    Kurz H, Mauser-Ganshorn A, Stickel HH. Differences in the binding of drugs to plasma proteins from newborn and adult man: I. Eur J Clin Pharmacol. 1977;11(6):463–467.PubMedCrossRefGoogle Scholar
  20. 20.
    Kingston HG, Kendrick A, Sommer KM, Olsen GD, Downes H. Binding of thiopental in neonatal serum. Anesthesiology. 1990;72(3): 428–431.PubMedCrossRefGoogle Scholar
  21. 21.
    Notarianni LJ. Plasma protein binding of drugs in pregnancy and in neonates. Clin Pharmacokinet. 1990;18(1):20–36.PubMedCrossRefGoogle Scholar
  22. 22.
    Bardy AH, Hiilesmaa VK, Teramo K, Neuvonen PJ. Protein binding of antiepileptic drugs during pregnancy, labor, and puerperium. Ther Drug Monit. 1990;12(1):40–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Lerman J, Strong HA, LeDez KM, Swartz J, Rieder MJ, Burrows FA. Effects of age on the serum concentration of alpha 1-acid glycoprotein and the binding of lidocaine in pediatric patients. Clin Pharmacol Ther. 1989;46(2):219–225.PubMedCrossRefGoogle Scholar
  24. 24.
    Wood M, Wood AJ. Changes in plasma drug binding and alpha 1-acid glycoprotein in mother and newborn infant. Clin Pharmacol Ther. 1981;29(4):522–526.PubMedCrossRefGoogle Scholar
  25. 25.
    Kurz H, Michels H, Stickel HH. Differences in the binding of drugs to plasma proteins from newborn and adult man: II. Eur J Clin Pharmacol. 1977;11(6):469–472.PubMedCrossRefGoogle Scholar
  26. 26.
    Ehrnebo M, Agurell S, Jalling B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–193.PubMedCrossRefGoogle Scholar
  27. 27.
    Nau H, Luck W, Kuhnz W. Decreased serum protein binding of diazepam and its major metabolite in the neonate during the first postnatal week relate to increased free fatty acid levels. Br J Clin Pharmacol. 1984;17(1):92–98.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Brodersen R, Robertson A. Ceftriaxone binding to human serum albumin: competition with bilirubin. Mol Pharmacol. 1989;36(3):478–483.PubMedGoogle Scholar
  29. 29.
    Pacifici GM, Viani A, Taddeucci-Brunelli G. Serum protein binding of furosemide in newborn infants and children. Dev Pharmacol Ther. 1987;10(6):413–421.PubMedGoogle Scholar
  30. 30.
    Echizen H, Nakura M, Saotome T, Minoura S, Ishizaki T. Plasma protein binding of disopyramide in pregnant and postpartum women, and in neonates and their mothers. Br J Clin Pharmacol. 1990;29(4):423–430.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Pacifici GM, Taddeucci-Brunelli G, Rane A. Clonazepam serum protein binding during development. Clin Pharmacol Ther. 1984;35(3):354–359.PubMedCrossRefGoogle Scholar
  32. 32.
    Schaad UB, Hayton WL, Stoeckel K. Single-dose ceftriaxone kinetics in the newborn. Clin Pharmacol Ther. 1985;37(5):522–528.PubMedCrossRefGoogle Scholar
  33. 33.
    Benson JM, Boudinot FD, Pennell AT, Cunningham FE, DiPiro JT. In vitro protein binding of cefonicid and cefuroxime in adult and neonatal sera. Antimicrob Agents Chemother 1993;37(6):1343–7.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Brodersen R, Honore B. Drug binding properties of neonatal albumin. Acta Paediatr Scand. 1989;78(3):342–346.PubMedCrossRefGoogle Scholar
  35. 35.
    Belpaire FM, Wynant P, Van Trappen P, Dhont M, Verstraete A, Bogaert MG. Protein binding of propranolol and verapamil enantiomers in maternal and foetal serum. Br J Clin Pharmacol. 1995;39(2):190–193.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Hamar C, Levy G. Factors affecting the serum protein binding of salicylic acid in newborn infants and their mothers. Pediatr Pharmacol. 1980;1(1):31–43.Google Scholar
  37. 37.
    Wilson AS, Stiller RL, Davis PJ, et al. Fentanyl and alfentanil plasma protein binding in preterm and term neonates. Anesth Analg. 1997;84(2):315–318.PubMedGoogle Scholar
  38. 38.
    Meuldermans W, Woestenborghs R, Noorduin H, Camu F, van Steenberge A, Heykants J. Protein binding of the analgesics alfentanil and sufentanil in maternal and neonatal plasma. Eur J Clin Pharmacol. 1986;30(2):217–219.PubMedCrossRefGoogle Scholar
  39. 39.
    Bodenham A, Park GR. Alfentanil infusions in patients requiring intensive care. Clin Pharmacokinet. 1988;15(4):216–226.PubMedCrossRefGoogle Scholar
  40. 40.
    Olkkola KT, Hamunen K, Maunuksela EL. Clinical pharmacokinetics and pharmacodynamics of opioid analgesics in infants and children. Clin Pharmacokinet. 1995;28(5):385–404.PubMedCrossRefGoogle Scholar
  41. 41.
    Furst DE, Tozer TN, Melmon KL. Salicylate clearance, the resultant of protein binding and metabolism. Clin Pharmacol Ther. 1979;26(3):380–389.PubMedGoogle Scholar
  42. 42.
    Sallee FR, Pollock BG. Clinical pharmacokinetics of imipramine and desipramine. Clin Pharmacokinet. 1990;18(5):346–364.PubMedCrossRefGoogle Scholar
  43. 43.
    Siddoway LA, Woosley RL. Clinical pharmacokinetics of disopyramide. Clin Pharmacokinet. 1986;11(3):214–222.PubMedCrossRefGoogle Scholar
  44. 44.
    Nattel S, Gagne G, Pineau M. The pharmacokinetics of lignocaine and beta-adrenoceptor antagonists in patients with acute myocardial infarction. Clin Pharmacokinet. 1987;13(5):293–316.PubMedCrossRefGoogle Scholar
  45. 45.
    Kearns GL, Kemp SF, Turley CP, Nelson DL. Protein binding of phenytoin and lidocaine in pediatric patients with type I diabetes mellitus. Dev Pharmacol Ther. 1988;11(1):14–23.PubMedGoogle Scholar
  46. 46.
    Handal KA, Schauben JL, Salamone FR. Naloxone. Ann Emerg Med. 1983;12(7):438–445.PubMedCrossRefGoogle Scholar
  47. 47.
    Bendayan R, Pieper JA, Stewart RB, Caranasos GJ. Influence of age on serum protein binding of propranolol. Eur J Clin Pharmacol. 1984;26(2):251–254.PubMedCrossRefGoogle Scholar
  48. 48.
    Colangelo PM, Blouin RA, Steinmetz JE, McNamara PJ, DeMaria AN, Wedlund PJ. Age and propranolol stereoselective disposition in humans. Clin Pharmacol Ther. 1992;51(5):489–494.PubMedCrossRefGoogle Scholar
  49. 49.
    Pickoff AS, Kessler KM, Singh S, et al. Age-related differences in the protein binding of quinidine. Dev Pharmacol Ther. 1981;3(2):108–115.PubMedGoogle Scholar
  50. 50.
    Verme CN, Ludden TM, Clementi WA, Harris SC. Pharmacokinetics of quinidine in male patients: a population analysis. Clin Pharmacokinet. 1992;22(6):468–480. [Published erratum appears in Clin Pharmacokinet. 1992;23(1):68.]PubMedCrossRefGoogle Scholar
  51. 51.
    Meistelman C, Benhamou D, Barre J, et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology. 1990;72(3):470–473.PubMedCrossRefGoogle Scholar
  52. 52.
    Bovill JG, Sebel PS, Blackburn CL, Oei-Lim V, Heykants JJ. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology. 1984;61(5):502–506.PubMedCrossRefGoogle Scholar
  53. 53.
    McTavish D, Sorkin EM. Verapamil: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drugs. 1989;38(1):19–76.PubMedCrossRefGoogle Scholar
  54. 54.
    Ehrnebo M, Nilsson SO, Boreus LO. Pharmacokinetics of ampicillin and its prodrugs bacampicillin and pivampicillin in man. J Pharmacokinet Biopharm. 1979;7(5):429–451.PubMedCrossRefGoogle Scholar
  55. 55.
    Kentala E, Kaila T, Iisalo E, Kanto J. Intramuscular atropine in healthy volunteers: a pharmacokinetic and pharmacodynamic study. Int J Clin Pharmacol Ther Toxicol. 1990;28(9):399–404.PubMedGoogle Scholar
  56. 56.
    Kuhnz W, Steldinger R, Nau H. Protein binding of carbamazepine and its epoxide in maternal and fetal plasma at delivery: comparison to other anticonvulsants. Dev Pharmacol Ther. 1984;7(1):61–72.PubMedGoogle Scholar
  57. 57.
    Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine-10,11-epoxide: an update. Clin Pharmacokinet. 1986;11(3):177–198.PubMedCrossRefGoogle Scholar
  58. 58.
    Ambrose PJ. Clinical pharmacokinetics of chloramphenicol and chloramphenicol succinate. Clin Pharmacokinet. 1984;9(3):222–238.PubMedCrossRefGoogle Scholar
  59. 59.
    Greenblatt DJ, Shader RI, MacLeod SM, Sellers EM. Clinical pharmacokinetics of chlordiazepoxide. Clin Pharmacokinet. 1978;3(5):381–394.PubMedCrossRefGoogle Scholar
  60. 60.
    Zemlickis D, Klein J, Moselhy G, Koren G. Cisplatin protein binding in pregnancy and the neonatal period. Med Pediatr Oncol. 1994;23(6):476–479.PubMedCrossRefGoogle Scholar
  61. 61.
    Berlin A, Dahistrom H. Pharmacokinetics of the anticonvulsant drug clonazepam evaluated from single oral and intravenous doses and by repeated oral administration. Eur J Clin Pharmacol. 1975;9(2–3):155–159.PubMedCrossRefGoogle Scholar
  62. 62.
    Spino M, Chai RP, Isles AF, et al. Cloxacillin absorption and disposition in cystic fibrosis. J Pediatr. 1984;105(5):829–835.PubMedCrossRefGoogle Scholar
  63. 63.
    Greenblatt DJ, Allen MD, Harmatz JS, Shader RI. Diazepam disposition determinants. Clin Pharmacol Ther. 1980;27(3):301–312.PubMedCrossRefGoogle Scholar
  64. 64.
    Mooradian AD. Digitalis: an update of clinical pharmacokinetics, therapeutic monitoring techniques and treatment recommendations. Clin Pharmacokinet. 1988;15(3):165–179.PubMedCrossRefGoogle Scholar
  65. 43.
    Herve F, Duche JC, d Athis P, Marche C, Barre J, Tillement JP. Binding of disopyramide, methadone, dipyridamole, chlorpromazine, lignocaine and progesterone to the two main genetic variants of human alpha 1-acid glycoprotein: evidence for drug-binding differences between the variants and for the presence of two separate drug-binding sites on alpha 1-acid glycoprotein. Pharmacogenetics. 1996;6(5):403–415.PubMedCrossRefGoogle Scholar
  66. 65.
    Gorodischer R, Krasner J, Yaffe SJ. Serum protein binding of digoxin in newborn infants. Res Commun Chem Pathol Pharmacol. 1974;9(2):387–390.PubMedGoogle Scholar
  67. 66.
    Hammarlund-Udenaes M, Benet LZ. Furosemide pharmacokinetics and pharmacodynamics in health and disease-an update. J Pharmacokinet Biopharm. 1989;17(1):1–46.PubMedCrossRefGoogle Scholar
  68. 67.
    Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit. 1991;13(1):1–23.PubMedCrossRefGoogle Scholar
  69. 68.
    Hoener B, Patterson SE. Nitrofurantoin disposition. Clin Pharmacol Ther. 1981;29(6):808–816.PubMedCrossRefGoogle Scholar
  70. 69.
    Browne TR, Evans JE, Szabo GK, Evans BA, Greenblatt DJ. Studies with stable isotopes: II. Phenobarbital pharmacokinetics during monotherapy. J Clin Pharmacol. 1985;25(1):51–58.PubMedCrossRefGoogle Scholar
  71. 70.
    Loughnan PM, Greenwald A, Purton WW, Aranda JV, Watters G, Neims AH. Pharmacokinetic observations of phenytoin disposition in the newborn and young infant. Arch Dis Child. 1977;52(4):302–309.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 71.
    Levine M, Chang T. Therapeutic drug monitoring of phenytoin: rationale and current status. Clin Pharmacokinet. 1990;19(5):341–358.PubMedCrossRefGoogle Scholar
  73. 72.
    Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology. 1985;62(6):714–724.PubMedCrossRefGoogle Scholar
  74. 73.
    Sorbo S, Hudson RJ, Loomis JC. The pharmacokinetics of thiopental in pediatric surgical patients. Anesthesiology. 1984;61(6):666–670.PubMedCrossRefGoogle Scholar
  75. 74.
    Fisher DM, O Keeffe C, Stanski DR, Cronnelly R, Miller RD, Gregory GA. Pharmacokinetics and pharmacodynamics of d-tubocurarine in infants, children, and adults. Anesthesiology. 1982;57(3):203–208.PubMedCrossRefGoogle Scholar
  76. 75.
    Battino D, Estienne M, Avanzini G. Clinical pharmacokinetics of antiepileptic drugs in paediatric patients: Part I. Phenobarbital, primidone, valproic acid, ethosuximide and mesuximide. Clin Pharmacokinet. 1995;29(4):257–286.PubMedCrossRefGoogle Scholar
  77. 76.
    Nau H, Rating D, Koch S, Hauser I, Helge H. Valproic acid and its metabolites: placental transfer, neonatal pharmacokinetics, transfer via mothers milk and clinical status in neonates of epileptic mothers. J Pharmacol Exp Ther. 1981;219(3):768–777.PubMedGoogle Scholar
  78. 77.
    Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid—1988. Clin Pharmacokinet. 1988;15(6):367–389.PubMedCrossRefGoogle Scholar
  79. 78.
    Hayton WL, Stoeckel K. Age-associated changes in ceftriaxone pharmacokinetics. Clin Pharmacokinet. 1986;11(1):76–86.PubMedCrossRefGoogle Scholar
  80. 79.
    Yuk JH, Nightingale CH, Quintiliani R. Clinical pharmacokinetics of ceftriaxone. Clin Pharmacokinet. 1989;17(4):223–235.PubMedCrossRefGoogle Scholar
  81. 80.
    Herngren L, Lundberg B, Nergardh A. Pharmacokinetics of total and free valproic acid during monotherapy in infants. J Neurol. 1991;238(6):315–319.PubMedCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2002

Authors and Affiliations

  1. 1.Division of Pharmaceutical Sciences, College of PharmacyUniversity of KentuckyLexington

Personalised recommendations