Skip to main content
Log in

Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder x-ray diffraction

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

In the present study, a series of solid dispersions of the drug nimodipine using polyethylene glycol as carrier were prepared following the hot-melt method. Micro-Raman spectroscopy in conjunction with X-ray powder diffractometry was used for the characterization of the solid structure, including spatial distribution, physical state, and presence of polymorphs, as well as storage stability of nimodipine in its solid formulations. The effect of storage time on drug stability was investigated by examination of the samples 6 months and 18 months after preparation. Confocal micro-Raman mapping performed on the samples showed that the drug was not uniformly distributed on a microscopic level. The presence of crystals of nimodipine with sizes varying between one and several micrometers was detected, and the crystal size seemed to increase with overall drug content. In samples examined 6 months after preparation it was found that the crystals existed mainly as the racemic compound, whereas after 18 months of storage mainly crystal conglomerates were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell Roberts SN, William AC, Grimsey IM, Booth SW. Quantitative analysis of mannitol polymorphs. FT-Raman spectroscopy. J Pharm Biomed Anal. 2002;28: 1135–1147.

    Article  PubMed  CAS  Google Scholar 

  2. De Spiegeleer B, Seghers D, Wieme R, et al. Determination of the relative amounts of three crystal forms of a benzimidazole drug in complex finished formulations by FT-Raman spectroscopy. J Pharm Biomed Anal. 2005;39:275–280.

    Article  PubMed  Google Scholar 

  3. Tían F, Zeitler JA, Strachan CJ, Savílle DJ, Gordon KC, Rades T. Characterizing the conversion kinetics of carbamazepine polymorphs to the dihydrate in aqueous suspension using Raman spectroscopy. J Pharm Biomed Anal. 2006;40:271–280.

    Article  PubMed  Google Scholar 

  4. Yu L, Reutzel SM, Stephenson GA. Physical characterization of polymorphic drugs: an integrated characterization strategy. Pharm Sci Tech Today. 1998;1:118–127.

    Article  CAS  Google Scholar 

  5. Stephenson GA, Pfeiffer RR, Byrn SR. Solid-state investigation of the tautomerism of acetohexamide. Int J Pharm. 1997;146:93–99.

    Article  CAS  Google Scholar 

  6. Threlfall TL. Analysis of organic polymorphs: a review. Analyst. 1995;120:2435–2460.

    Article  CAS  Google Scholar 

  7. Huong PV. Drug analysis by Raman and micro-Raman spectroscopy. J Pharm Biomed Anal, 1986;4:811–823.

    Article  PubMed  CAS  Google Scholar 

  8. Huong PV. New possibilities of Raman micro-spectroscopy. Vib Spectrosc. 1996;11:17–28.

    Article  CAS  Google Scholar 

  9. Fini G. Applications of Raman spectroscopy to pharmacy. J Raman Spectrosc. 2004;35:335–337.

    Article  CAS  Google Scholar 

  10. Sharonov S, Chourpa I, Morjani H, Nabiev I, Manfait M. Feofanov A. Confocal spectral imaging analysis in studies of the spatial distribution of antitumor drugs within living cancer cells. Anal Chim Acta. 1994;290:40–47.

    Article  CAS  Google Scholar 

  11. Grunenberg A, Keil B, Heck JO. Polymorphism in binary mixtures, as exemplified by nimodipine. Int J Pharm. 1995;118:11–21.

    Article  CAS  Google Scholar 

  12. Grunenberg A, Henck JO, Siesler HW. Theoretical derivation and practical application of energy/temperature diagrams as an instrument in preformulation studies of polymorphic drug substances. Int J Pharm. 1996;129:147–158.

    Article  CAS  Google Scholar 

  13. Cardoso TM, Rodrigues PO, Stulzer HK, Silva MAS, Matos JR. Physical-chemical characterization and polymorphism determination of two nimodipine samples deriving from distinct laboratories. Drug Dev Ind Pharm. 2005;31:631–637.

    Article  PubMed  CAS  Google Scholar 

  14. Wang SD, Herbette LG, Rhodes DG. Structure of the calcium channel antagonist, nimodipine. Acta Crystallogr Sect C. 1989;C45:1748–1751.

    Article  Google Scholar 

  15. Urbanetz NA, Lippold BH. Solid dispersions of nimodipine and polyethylene glycol 2000: dissolution properties and physico-chemical characterization. Eur J Pharm Biopharm. 2005;59:107–118.

    Article  PubMed  CAS  Google Scholar 

  16. Urbanetz NA. Stabllization of solid dispersions of nimodipine and polyethylene glycol. 2000. Eur J Pharm Sci. 2006;28:67–76.

    Article  PubMed  CAS  Google Scholar 

  17. Papageorgiou GZ, Bikiaris D, Karavas E, et al. Effect of physical state and particle size distribution on dissolution enhancement of nimodipine/PEG solid dispersions prepared by melt mixing and solvent evaporation. AAPS J [serial online]. 2006;8:E623-E631.

    Article  Google Scholar 

  18. Hörter D, Dressman JB. Inffuence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev. 2001;46:75–87.

    Article  PubMed  Google Scholar 

  19. Leuner, C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60.

    Article  PubMed  CAS  Google Scholar 

  20. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm. 2002231:131–144.

    Article  PubMed  CAS  Google Scholar 

  21. Ford JL. The current status of solid dispersions. Pharm Acta Helv. 1986;61:69–88.

    PubMed  CAS  Google Scholar 

  22. Breitenbach J, Schrof W, Neumann J. Confocal Raman-spectroscopy: analytical approach to solid dispersions and mapping of drugs. Pharm Res. 1999;16:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  23. Bikiaris D, Papageorgiou GZ, Stergion A, et al. Physicochemical studies on solid dispersions of poorly water-soluble drugs: evaluation of capabilities and limitations of thermal analysis techniques. Thermochim Acta. 2005;439:58–67.

    Article  CAS  Google Scholar 

  24. Lin-Vien D, Colthup NB, Fatelay WG, Grasselli JG. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. London, UK: Academic Press; 1991.

    Google Scholar 

  25. Karavas E, Georgarakis E, Bikiaris D. Felodipine nanodispersions as active core for predictable pulsatile chronotherapeutics using PVP/HPMC blends as coating layer. Int J Pharm. 2006;313:189–197.

    Article  PubMed  CAS  Google Scholar 

  26. Kanaze FI, Kokkalu E, Niopas I, Georgarakis E, Stergiou A, Bikiaris D. Dissolution enhancement of flavonoids by solid dispersion in PVP and PEG matrices: a comparative study. J Appl Polym Sci. 2006;102:460–471.

    Article  CAS  Google Scholar 

  27. Karavas E, Georgarakis E, Bikiaris D. Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur J Pharm Biopharm. 2006;64:115–116.

    Article  PubMed  CAS  Google Scholar 

  28. Al Zoubi N, Koundourellis JE, Malamataris S. FT-IR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes. J Pharm Biomed Anal. 2002;29:459–467.

    Article  Google Scholar 

  29. El Hagrasy AS, Chang SY, Desai D, Kiang S. Raman spectroscopy for the determination of coating uniformity of tablets: assessment of product quality and coating pan mixing efficiency during scale-up. J Pharm Innov. 2006;Sept/Oct:37–42.

    Article  Google Scholar 

  30. Griesser UJ, Auer ME, Burger A. Micro-thermal analysis, FTIR- and Raman-microscopy of (R,S)-proxyphylline crystal forms. Microchem J. 2000;65:283–292.

    Article  CAS  Google Scholar 

  31. Bell SEJ, Beattie JR, McGarvey JJ, Peters KL, Sirimuthu NMS, Speers SJ. Development of sampling methods for Raman analysis of solid dosage forms of therapeutic and illicit drugs. J Raman Spectrosc. 2004;35:409–417.

    Article  CAS  Google Scholar 

  32. O’Brien LE, Timmins P, Williams AC, York P. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs. J Pharm Biomed Anal. 2004;36:335–340.

    Article  PubMed  CAS  Google Scholar 

  33. Romero-Torres S, Perez-Ramos J, Morris KR, Grant EE. Raman spectroscopy for tablet coating thickness quantification and coating characterization in the presence of strong fluorescent interference. J Pharm Biomed Anal. 2006;41:811–819.

    Article  PubMed  CAS  Google Scholar 

  34. Krishna CM, Sockalingum GD, Kegelaer G, Rubin S, Kartha VB, Manfait M. Micro-Raman spectroscopy of mixed cancer cell populations. Vib Spectrosc. 2005;38:95–100.

    Article  CAS  Google Scholar 

  35. Koenig JL, Angood AC. Raman spectra of poly(ethylene glycols) in solution. J Polym Sci A. 1970;8:1787–1796.

    Article  CAS  Google Scholar 

  36. Verheyen S, Blaton N, Kinget R, Van den Mooter G. Mechanism of increased dissolution of diazepam and temazepam from polyethylene glycol 6000 solid dispersions. Int J Pharm. 2002;249:45–58.

    Article  PubMed  CAS  Google Scholar 

  37. Suzuki H, Sunada H. Some factors influencing the dissolution of solid dispersions with nicotinamide and hydroxypropylmethylcellulose as combined carriers. Chem Pharm Bull (Tokyo). 1998;46:1015–1020.

    CAS  Google Scholar 

  38. Saers ES, Nystrom C, Alden M. Physicochemical aspects of drug release, XVI: the effect of storage on drug dissolution from solid dispersions and the influence of cooling rate and incorporation of surfactant. Int J Pharm. 1993;90:105–118.

    Article  Google Scholar 

  39. Serajuddin ATM. Solid dispersion of poorly water soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88:1058–1066.

    Article  PubMed  CAS  Google Scholar 

  40. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86:1–12.

    Article  PubMed  CAS  Google Scholar 

  41. Junginger HE, Wedler M. Thermal stability of mefrusidepolyvinylpyrrolidone solid dispersions. Pharm Res. 1986;3:41–44.

    Article  CAS  Google Scholar 

  42. Taylor LS, Zografi G. The quantitative analysis of crystallinity using FT-Raman spectroscopy. Pharm Res. 1998;15:755–761.

    Article  PubMed  CAS  Google Scholar 

  43. Chan KLA, Kazarian SG. FTIR spectroscopic imaging of dissolution of a solid dispersion of nifedipine in poly(ethylene glycol). Mol Pharm. 2004;1:331–335.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristides Docoslis.

Additional information

Published: December 7, 2007

Rights and permissions

Reprints and permissions

About this article

Cite this article

Docoslis, A., Huszarik, K.L., Papageorgiou, G.Z. et al. Characterization of the distribution, polymorphism, and stability of nimodipine in its solid dispersions in polyethylene glycol by micro-Raman spectroscopy and powder x-ray diffraction. AAPS J 9, 43 (2007). https://doi.org/10.1208/aapsj0903043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj0903043

Keywords

Navigation