The AAPS Journal

, Volume 8, Issue 4, pp E743–E755 | Cite as

Metabolism of GTI-2040, a phosphorothioate oligonucleotide antisense, using ion-pair reversed phase high performance liquid chromatography (HPLC) coupled with electrospray ion-trap mass spectrometry

  • Xiaohui Wei
  • Guowei Dai
  • Zhongfa Liu
  • Hao Cheng
  • Zhiliang Xie
  • Guido Marcucci
  • Kenneth K. Chan


GTI-2040 is a 20-mer phosphorothioate oligonucleotide, which is complementary to the messenger ribonucleic acid (mRNA) of the R2 subunit of ribonucleotide reductase. This study characterized both the in vivo and in vitro metabolism of GTI-2040. A highly specific ion-pair reversed-phase electrospray ionization (IP-RP-ESI) liquid chromatographymass spectrometry (LC-MS) method was used for the identification of GTI-2040 and metabolites from a variety of biological samples including exonuclease enzyme solutions, plasma, urine, mouse liver/kidney homogenates, and human liver microsomes. Progressively chain-shortened metabolites trucated from the 3′ terminal of GTI-2040 were detected in all of the evaluated biological samples. GTI-2040 was found to be a good substrate for 3′ but not 5′ exonuclease. While the pattern of n-1 chain-shortened 3′-exonucleolytic degradation was similar in the mouse liver and kidney homogenates, the latter was found to contain a larger number of shortenmers, the kidneys appeared to possess higher enzymatic reactivity toward GTI-2040. Thus, metabolism of GTI-2040 was found to occur in a variety of biological samples, mainly mediated by the 3′ exonuclease.


Metabolism phosphorothioate oligonucleotides GTI-2040 liquid chromatography/mass spectrometry 


  1. 1.
    Crooke ST. Progress in antisense technology. Annu Rev Med. 2004;55:61–95.PubMedCrossRefGoogle Scholar
  2. 2.
    Griffey RH, Greig MJ, Gaus HJ, et al. Characterization of oligonucleotide metabolism in vivo via liquid chromatography/electrospray tandem mass spectrometry with a quadrupole ion trap mass spectrometer. J Mass Spectrom. 1997;32:305–313.PubMedCrossRefGoogle Scholar
  3. 3.
    Geary RS, Watanabe TA, Truong L, et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther. 2001;296:890–897.PubMedGoogle Scholar
  4. 4.
    Yu RZ, Zhang H, Geary RS, et al. Pharmacokinetics and pharmacodynamics of an antisense phosphorothioate oligonucleotide targeting Fas mRNA in mice. J Pharmacol Exp Ther. 2001;296:388–395.PubMedGoogle Scholar
  5. 5.
    Raynaud FI, Orr RM, Goddard PM, et al. Pharmacokinetics of G3139, a phosphorothioate oligodeoxynucleotide antisense to bcl-2, after intravenous administration or continuous subcutaneous infusion to mice. J Pharmacol Exp Ther. 1997;281:420–427.PubMedGoogle Scholar
  6. 6.
    Kurreck J. Antisense technologies: improvement through novel chemical modifications. Eur J Biochem. 2003;270:1628–1644.PubMedCrossRefGoogle Scholar
  7. 7.
    Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA. 1991;88:7595–7599.PubMedCrossRefGoogle Scholar
  8. 8.
    Cossum PA, Sasmor H, Dellinger D, et al. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther. 1993;267:1181–1190.PubMedGoogle Scholar
  9. 9.
    Crooke ST, Graham MJ, Zuckerman JE, et al. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther. 1996;277:923–937.PubMedGoogle Scholar
  10. 10.
    Leeds JM, Graham MJ, Truong L, Cummins LL. Quantitation of phosphorothioate oligonucleotides in human plasma. Anal Biochem. 1996;235:36–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Gaus HJ, Owens SR, Winniman M, Cooper S, Cummins LL. On-line HPLC electrospray mass spectrometry of phosphorothioate oligonucleotide metabolites. Anal Chem. 1997;69:313–319.PubMedCrossRefGoogle Scholar
  12. 12.
    Gilar M. Analysis and purification of synthetic oligonucleotides by reversed-phase high-performance liquid chromatography with photodiode array and mass spectrometry detection. Anal Biochem. 2001;298:196–206.PubMedCrossRefGoogle Scholar
  13. 13.
    Lichtenwalter KG, Apffel A, Bai J, et al. Approaches to functional genomics: potential of matrix-assisted laser desorption ionization—time of flight mass spectrometry combined with separation methods for the analysis of DNA in biological samples. J Chromatogr B Biomed Sci Appl. 2000;745:231–241.PubMedCrossRefGoogle Scholar
  14. 14.
    Gilar M, Bouvier ESP. Purification of crude DNA oligonucleotides by solid-phase extraction and reversed-phase high-performance liquid chromatography. J Chromatogr A. 2000;890:167–177.PubMedCrossRefGoogle Scholar
  15. 15.
    Ni J, Pomerantz C, Rozenski J, Zhang Y, McCloskey JA. Interpretation of oligonucleotide mass spectra for determination of sequence using electrospray ionization and tandem mass spectrometry. Anal Chem. 1996;68:1989–1999.PubMedCrossRefGoogle Scholar
  16. 16.
    Crooke RM, Graham MJ, Martin MJ, Lemonidis KM, Wyrzykiewiecz T, Cummins LL. Metabolism of antisense oligonucleotides in rat liver homogenates. J Pharmacol Exp Ther. 2000;292:140–149.PubMedGoogle Scholar
  17. 17.
    Dai G, Wei X, Liu Z, Liu S, Marcucci G, Chan KK. Characterization and quantification of Bcl-2 antisense G3139 and metabolites in plasma and urine by ion-pair reversed phase HPLC coupled with electrospray ion-trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;825:201–213.PubMedCrossRefGoogle Scholar
  18. 18.
    Murphy AT, Brown-Augsburger P, Yu RZ, Geary RS, Thibodeaux S, Ackermann BL. Development of an ion-pair reverse-phase liquid chromatographic/tandem mass spectrometry method for the determination of an 18-mer phosphorothioate oligonucleotide in mouse liver tissue. Eur J Mass Spectrom (Chichester, Eng). 2005;11:209–215.CrossRefGoogle Scholar
  19. 19.
    Geary RS, Leeds JM, Henry SP, Monteith DK, Levin AA. Antisense oligonucleotide inhibitors for the treatment of cancer. 1. Pharmacokinetic properties of phosphorothioate oligodeoxynucleotides. Anticancer Drug Des. 1997;12:383–393.PubMedGoogle Scholar
  20. 20.
    Temsamani J, Tang JY, Padmapriya A, Kubert M, Agrawal S. Pharmacokinetics, biodistribution, and stability of capped oligodeoxynucleotide phosphorothioates in mice. Antisense Res Dev. 1993;3:277–284.PubMedGoogle Scholar
  21. 21.
    Temsamani J, Roskey A, Chaix C, Agrawal S. In vivo metabolic profile of a phosphorothioate oligodeoxyribonucleotide. Antisense Nucleic Acid Drug Dev. 1997;7:159–165.PubMedGoogle Scholar
  22. 22.
    Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS. Study of phosphorothioate-modified oligonucleotide resistance to 3′-exonuclease using capillary electrophoresis. J Chromatogr B Biomed Sci Appl. 1998;714:13–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Graham MJ, Crooke ST, Lemonidis KM, Gaus HJ, Templin MV, Crooke RM. Hepatic distribution of a phosphorothioate oligodeoxynucleotide within rodents following intravenous administration. Biochem Pharmacol. 2001;62:297–306.PubMedCrossRefGoogle Scholar
  24. 24.
    Noll BO, McCluskie MJ, Sniatala T, et al. Biodistribution and metabolism of immunostimulatory oligodeoxynucleotide CPG 7909 in mouse and rat tissues following subcutaneous administration. Biochem Pharmacol. 2005;69:981–991.PubMedCrossRefGoogle Scholar
  25. 25.
    Crooke RM, Graham MJ, Cooke ME, Crooke ST. In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J Pharmacol Exp Ther. 1995;275:462–473.PubMedGoogle Scholar
  26. 26.
    Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS. Impact of 3′-exonuclease stereoselectivity on the kinetics of phosphorothioate oligonucleotide metabolism. Antisense Nucleic Acid Drug Dev. 1998;8:35–42.PubMedGoogle Scholar
  27. 27.
    Graham MJ, Crooke ST, Monteith DK, et al. In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J Pharmacol Exp Ther. 1998;286:447–458.PubMedGoogle Scholar
  28. 28.
    Koziolkiewicz M, Wojcik M, Kobylanska A, et al. Stability of stereoregular oligo(nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acid Drug Dev. 1997;7:43–48.PubMedGoogle Scholar
  29. 29.
    Lee Y, Vassilakos A, Feng N, et al. GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res. 2003;63:2802–2811.PubMedGoogle Scholar
  30. 30.
    Desai AA, Schilsky RL, Young A, et al. A phase I study of antisense oligonucleotide GTI-2040 given by continuous intravenous infusion in patients with advanced solid tumors. Ann Oncol. 2005;16:958–965.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu Z, Minkler PE, Lin D, Sayre LM. Derivatization of amino acids with N,N-dimethyl-2,4-dinitro-5-fluorobenzylamine for liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2004; 18:1059–1065.PubMedCrossRefGoogle Scholar
  32. 32.
    Liu Z, Floss HG, Cassady JM, Chan KK. Metabolism studies of the anti-tumor agent maytansine and its analog ansamitocin P-3 using liquid chromatography/tandem mass spectrometry. J Mass Spectrom. 2005;40:389–399.PubMedCrossRefGoogle Scholar
  33. 33.
    Cohen AS, Bourque AJ, Wang BH, Smisek DL, Belenky A. A nonradioisotope approach to study the in vivo metabolism of phosphorothioate oligonucleotides. Antisense Nucleic Acid Drug Dev. 1997;7:13–22.PubMedGoogle Scholar
  34. 34.
    Rozenski J, McCloskey JA. SOS: a simple interactive program for ab initio oligonucleotide sequencing by mass spectrometry. J Am Soc Mass Spectrom. 2002;13:200–203.PubMedCrossRefGoogle Scholar
  35. 35.
    McLuckey SA, Goeringer DE, Glish GL. Collisional activation with random noise in ion trap mass spectrometry. Anal Chem. 1992;64:1455–1460.PubMedCrossRefGoogle Scholar
  36. 36.
    McLuckey SA, Glish GL, Van Berkel GJ. Charge determination of product ions formed from collision-induced dissociation of multiply protonated molecules via ion/molecule reactions. Anal Chem. 1991;63:1971–1978.PubMedCrossRefGoogle Scholar
  37. 37.
    Apffel A, Chakel JA, Hancock WS, Souders C M'Timkulu T, Pungor E Jr. Application of multidimensional affinity high-performance liquid chromatography and electrospray ionization liquid chromatography-mass spectrometry to the characterization of glycosylation in single-chain plasminogen activator: initial results. J Chromatogr A. 1996;750:35–42.PubMedCrossRefGoogle Scholar
  38. 38.
    Huber CG, Oefner PJ, Bonn GK. High-resolution liquid chromatography of oligonucleotides on nonporous alkylated styrenedivinylbenzene copolymers. Anal Biochem. 1993;212:351–358.PubMedCrossRefGoogle Scholar
  39. 39.
    Kuklin A, Munson K, Gjerde D, Haefele R, Taylor P. Detection of single-nucleotide polymorphisms with the WAVE DNA fragment analysis system. Genet Test. 1998;1:201–206.CrossRefGoogle Scholar
  40. 40.
    Geary RS, Yu RZ, Leeds JM, Watanabe TA, Henry SP, Levin AA, eds. Pharmacokinetic properties in animals. In: Crooke ST, ed. Antisense Drug Technology. New York, NY: Marcel Dekker, Inc.: 2001:139–141.Google Scholar
  41. 41.
    Geary BS, Leeds JM, Fitchett J, et al. Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide antisense inhibitor of C-raf-1 kinase expression. Drug Metab Dispos. 1997;25:1272–1281.PubMedGoogle Scholar
  42. 42.
    Geary RS, Yu RZ, Levin AA. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs. 2001;2:562–573.PubMedGoogle Scholar
  43. 43.
    Butler M, Stecker K, Bennett CF. Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab Invest. 1997;77:379–388.PubMedGoogle Scholar
  44. 44.
    Iversen P. In vivo studies with phosphorothioate oligonucleotides: pharmacokinetics prologue. Anticancer Drug Des. 1991;6:531–538.PubMedGoogle Scholar
  45. 45.
    Lorus Therapeutics. GTI-2040 Investigator Brochure. Toronto, Canada: Lorus Therapeutics, Inc.; 1999.Google Scholar
  46. 46.
    Sawai K, Mahato RI, Oka Y, Takakura Y, Hashida M. Disposition of oligonucleotides in isolated perfused rat kidney: involvement of scavenger receptors in their renal uptake. J Pharmacol Exp Ther. 1996;279:284–290.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  • Xiaohui Wei
    • 1
  • Guowei Dai
    • 2
  • Zhongfa Liu
    • 1
  • Hao Cheng
    • 1
  • Zhiliang Xie
    • 1
  • Guido Marcucci
    • 3
    • 4
    • 5
  • Kenneth K. Chan
    • 1
    • 3
  1. 1.Division of Pharmaceutics, College of PharmacyThe Ohio State UniversityColumbus
  2. 2.Pharmaceutical Research InstituteBristol-Myers-Squibb CoPrinceton
  3. 3.The Comprehensive Cancer CenterThe Ohio State UniversityColumbus
  4. 4.Division of Hematology-Oncology, College of MedicineThe Ohio State UniversityColumbus
  5. 5.Room 308 OSU CCCThe Ohio State UniversityColumbus

Personalised recommendations