Skip to main content
Log in

Metabolism of GTI-2040, a phosphorothioate oligonucleotide antisense, using ion-pair reversed phase high performance liquid chromatography (HPLC) coupled with electrospray ion-trap mass spectrometry

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

GTI-2040 is a 20-mer phosphorothioate oligonucleotide, which is complementary to the messenger ribonucleic acid (mRNA) of the R2 subunit of ribonucleotide reductase. This study characterized both the in vivo and in vitro metabolism of GTI-2040. A highly specific ion-pair reversed-phase electrospray ionization (IP-RP-ESI) liquid chromatographymass spectrometry (LC-MS) method was used for the identification of GTI-2040 and metabolites from a variety of biological samples including exonuclease enzyme solutions, plasma, urine, mouse liver/kidney homogenates, and human liver microsomes. Progressively chain-shortened metabolites trucated from the 3′ terminal of GTI-2040 were detected in all of the evaluated biological samples. GTI-2040 was found to be a good substrate for 3′ but not 5′ exonuclease. While the pattern of n-1 chain-shortened 3′-exonucleolytic degradation was similar in the mouse liver and kidney homogenates, the latter was found to contain a larger number of shortenmers, the kidneys appeared to possess higher enzymatic reactivity toward GTI-2040. Thus, metabolism of GTI-2040 was found to occur in a variety of biological samples, mainly mediated by the 3′ exonuclease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crooke ST. Progress in antisense technology. Annu Rev Med. 2004;55:61–95.

    Article  PubMed  CAS  Google Scholar 

  2. Griffey RH, Greig MJ, Gaus HJ, et al. Characterization of oligonucleotide metabolism in vivo via liquid chromatography/electrospray tandem mass spectrometry with a quadrupole ion trap mass spectrometer. J Mass Spectrom. 1997;32:305–313.

    Article  PubMed  CAS  Google Scholar 

  3. Geary RS, Watanabe TA, Truong L, et al. Pharmacokinetic properties of 2′-O-(2-methoxyethyl)-modified oligonucleotide analogs in rats. J Pharmacol Exp Ther. 2001;296:890–897.

    PubMed  CAS  Google Scholar 

  4. Yu RZ, Zhang H, Geary RS, et al. Pharmacokinetics and pharmacodynamics of an antisense phosphorothioate oligonucleotide targeting Fas mRNA in mice. J Pharmacol Exp Ther. 2001;296:388–395.

    PubMed  CAS  Google Scholar 

  5. Raynaud FI, Orr RM, Goddard PM, et al. Pharmacokinetics of G3139, a phosphorothioate oligodeoxynucleotide antisense to bcl-2, after intravenous administration or continuous subcutaneous infusion to mice. J Pharmacol Exp Ther. 1997;281:420–427.

    PubMed  CAS  Google Scholar 

  6. Kurreck J. Antisense technologies: improvement through novel chemical modifications. Eur J Biochem. 2003;270:1628–1644.

    Article  PubMed  CAS  Google Scholar 

  7. Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA. 1991;88:7595–7599.

    Article  PubMed  CAS  Google Scholar 

  8. Cossum PA, Sasmor H, Dellinger D, et al. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J Pharmacol Exp Ther. 1993;267:1181–1190.

    PubMed  CAS  Google Scholar 

  9. Crooke ST, Graham MJ, Zuckerman JE, et al. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J Pharmacol Exp Ther. 1996;277:923–937.

    PubMed  CAS  Google Scholar 

  10. Leeds JM, Graham MJ, Truong L, Cummins LL. Quantitation of phosphorothioate oligonucleotides in human plasma. Anal Biochem. 1996;235:36–43.

    Article  PubMed  CAS  Google Scholar 

  11. Gaus HJ, Owens SR, Winniman M, Cooper S, Cummins LL. On-line HPLC electrospray mass spectrometry of phosphorothioate oligonucleotide metabolites. Anal Chem. 1997;69:313–319.

    Article  PubMed  CAS  Google Scholar 

  12. Gilar M. Analysis and purification of synthetic oligonucleotides by reversed-phase high-performance liquid chromatography with photodiode array and mass spectrometry detection. Anal Biochem. 2001;298:196–206.

    Article  PubMed  CAS  Google Scholar 

  13. Lichtenwalter KG, Apffel A, Bai J, et al. Approaches to functional genomics: potential of matrix-assisted laser desorption ionization—time of flight mass spectrometry combined with separation methods for the analysis of DNA in biological samples. J Chromatogr B Biomed Sci Appl. 2000;745:231–241.

    Article  PubMed  CAS  Google Scholar 

  14. Gilar M, Bouvier ESP. Purification of crude DNA oligonucleotides by solid-phase extraction and reversed-phase high-performance liquid chromatography. J Chromatogr A. 2000;890:167–177.

    Article  PubMed  CAS  Google Scholar 

  15. Ni J, Pomerantz C, Rozenski J, Zhang Y, McCloskey JA. Interpretation of oligonucleotide mass spectra for determination of sequence using electrospray ionization and tandem mass spectrometry. Anal Chem. 1996;68:1989–1999.

    Article  PubMed  CAS  Google Scholar 

  16. Crooke RM, Graham MJ, Martin MJ, Lemonidis KM, Wyrzykiewiecz T, Cummins LL. Metabolism of antisense oligonucleotides in rat liver homogenates. J Pharmacol Exp Ther. 2000;292:140–149.

    PubMed  CAS  Google Scholar 

  17. Dai G, Wei X, Liu Z, Liu S, Marcucci G, Chan KK. Characterization and quantification of Bcl-2 antisense G3139 and metabolites in plasma and urine by ion-pair reversed phase HPLC coupled with electrospray ion-trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;825:201–213.

    Article  PubMed  CAS  Google Scholar 

  18. Murphy AT, Brown-Augsburger P, Yu RZ, Geary RS, Thibodeaux S, Ackermann BL. Development of an ion-pair reverse-phase liquid chromatographic/tandem mass spectrometry method for the determination of an 18-mer phosphorothioate oligonucleotide in mouse liver tissue. Eur J Mass Spectrom (Chichester, Eng). 2005;11:209–215.

    Article  CAS  Google Scholar 

  19. Geary RS, Leeds JM, Henry SP, Monteith DK, Levin AA. Antisense oligonucleotide inhibitors for the treatment of cancer. 1. Pharmacokinetic properties of phosphorothioate oligodeoxynucleotides. Anticancer Drug Des. 1997;12:383–393.

    PubMed  CAS  Google Scholar 

  20. Temsamani J, Tang JY, Padmapriya A, Kubert M, Agrawal S. Pharmacokinetics, biodistribution, and stability of capped oligodeoxynucleotide phosphorothioates in mice. Antisense Res Dev. 1993;3:277–284.

    PubMed  CAS  Google Scholar 

  21. Temsamani J, Roskey A, Chaix C, Agrawal S. In vivo metabolic profile of a phosphorothioate oligodeoxyribonucleotide. Antisense Nucleic Acid Drug Dev. 1997;7:159–165.

    PubMed  CAS  Google Scholar 

  22. Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS. Study of phosphorothioate-modified oligonucleotide resistance to 3′-exonuclease using capillary electrophoresis. J Chromatogr B Biomed Sci Appl. 1998;714:13–20.

    Article  PubMed  CAS  Google Scholar 

  23. Graham MJ, Crooke ST, Lemonidis KM, Gaus HJ, Templin MV, Crooke RM. Hepatic distribution of a phosphorothioate oligodeoxynucleotide within rodents following intravenous administration. Biochem Pharmacol. 2001;62:297–306.

    Article  PubMed  CAS  Google Scholar 

  24. Noll BO, McCluskie MJ, Sniatala T, et al. Biodistribution and metabolism of immunostimulatory oligodeoxynucleotide CPG 7909 in mouse and rat tissues following subcutaneous administration. Biochem Pharmacol. 2005;69:981–991.

    Article  PubMed  CAS  Google Scholar 

  25. Crooke RM, Graham MJ, Cooke ME, Crooke ST. In vitro pharmacokinetics of phosphorothioate antisense oligonucleotides. J Pharmacol Exp Ther. 1995;275:462–473.

    PubMed  CAS  Google Scholar 

  26. Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS. Impact of 3′-exonuclease stereoselectivity on the kinetics of phosphorothioate oligonucleotide metabolism. Antisense Nucleic Acid Drug Dev. 1998;8:35–42.

    PubMed  CAS  Google Scholar 

  27. Graham MJ, Crooke ST, Monteith DK, et al. In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J Pharmacol Exp Ther. 1998;286:447–458.

    PubMed  CAS  Google Scholar 

  28. Koziolkiewicz M, Wojcik M, Kobylanska A, et al. Stability of stereoregular oligo(nucleoside phosphorothioate)s in human plasma: diastereoselectivity of plasma 3′-exonuclease. Antisense Nucleic Acid Drug Dev. 1997;7:43–48.

    PubMed  CAS  Google Scholar 

  29. Lee Y, Vassilakos A, Feng N, et al. GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res. 2003;63:2802–2811.

    PubMed  CAS  Google Scholar 

  30. Desai AA, Schilsky RL, Young A, et al. A phase I study of antisense oligonucleotide GTI-2040 given by continuous intravenous infusion in patients with advanced solid tumors. Ann Oncol. 2005;16:958–965.

    Article  PubMed  CAS  Google Scholar 

  31. Liu Z, Minkler PE, Lin D, Sayre LM. Derivatization of amino acids with N,N-dimethyl-2,4-dinitro-5-fluorobenzylamine for liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2004; 18:1059–1065.

    Article  PubMed  CAS  Google Scholar 

  32. Liu Z, Floss HG, Cassady JM, Chan KK. Metabolism studies of the anti-tumor agent maytansine and its analog ansamitocin P-3 using liquid chromatography/tandem mass spectrometry. J Mass Spectrom. 2005;40:389–399.

    Article  PubMed  CAS  Google Scholar 

  33. Cohen AS, Bourque AJ, Wang BH, Smisek DL, Belenky A. A nonradioisotope approach to study the in vivo metabolism of phosphorothioate oligonucleotides. Antisense Nucleic Acid Drug Dev. 1997;7:13–22.

    PubMed  CAS  Google Scholar 

  34. Rozenski J, McCloskey JA. SOS: a simple interactive program for ab initio oligonucleotide sequencing by mass spectrometry. J Am Soc Mass Spectrom. 2002;13:200–203.

    Article  PubMed  CAS  Google Scholar 

  35. McLuckey SA, Goeringer DE, Glish GL. Collisional activation with random noise in ion trap mass spectrometry. Anal Chem. 1992;64:1455–1460.

    Article  PubMed  CAS  Google Scholar 

  36. McLuckey SA, Glish GL, Van Berkel GJ. Charge determination of product ions formed from collision-induced dissociation of multiply protonated molecules via ion/molecule reactions. Anal Chem. 1991;63:1971–1978.

    Article  PubMed  CAS  Google Scholar 

  37. Apffel A, Chakel JA, Hancock WS, Souders C M'Timkulu T, Pungor E Jr. Application of multidimensional affinity high-performance liquid chromatography and electrospray ionization liquid chromatography-mass spectrometry to the characterization of glycosylation in single-chain plasminogen activator: initial results. J Chromatogr A. 1996;750:35–42.

    Article  PubMed  CAS  Google Scholar 

  38. Huber CG, Oefner PJ, Bonn GK. High-resolution liquid chromatography of oligonucleotides on nonporous alkylated styrenedivinylbenzene copolymers. Anal Biochem. 1993;212:351–358.

    Article  PubMed  CAS  Google Scholar 

  39. Kuklin A, Munson K, Gjerde D, Haefele R, Taylor P. Detection of single-nucleotide polymorphisms with the WAVE DNA fragment analysis system. Genet Test. 1998;1:201–206.

    Article  CAS  Google Scholar 

  40. Geary RS, Yu RZ, Leeds JM, Watanabe TA, Henry SP, Levin AA, eds. Pharmacokinetic properties in animals. In: Crooke ST, ed. Antisense Drug Technology. New York, NY: Marcel Dekker, Inc.: 2001:139–141.

    Google Scholar 

  41. Geary BS, Leeds JM, Fitchett J, et al. Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide antisense inhibitor of C-raf-1 kinase expression. Drug Metab Dispos. 1997;25:1272–1281.

    PubMed  CAS  Google Scholar 

  42. Geary RS, Yu RZ, Levin AA. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs. 2001;2:562–573.

    PubMed  CAS  Google Scholar 

  43. Butler M, Stecker K, Bennett CF. Cellular distribution of phosphorothioate oligodeoxynucleotides in normal rodent tissues. Lab Invest. 1997;77:379–388.

    PubMed  CAS  Google Scholar 

  44. Iversen P. In vivo studies with phosphorothioate oligonucleotides: pharmacokinetics prologue. Anticancer Drug Des. 1991;6:531–538.

    PubMed  CAS  Google Scholar 

  45. Lorus Therapeutics. GTI-2040 Investigator Brochure. Toronto, Canada: Lorus Therapeutics, Inc.; 1999.

    Google Scholar 

  46. Sawai K, Mahato RI, Oka Y, Takakura Y, Hashida M. Disposition of oligonucleotides in isolated perfused rat kidney: involvement of scavenger receptors in their renal uptake. J Pharmacol Exp Ther. 1996;279:284–290.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth K. Chan.

Additional information

Published: December 15, 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, X., Dai, G., Liu, Z. et al. Metabolism of GTI-2040, a phosphorothioate oligonucleotide antisense, using ion-pair reversed phase high performance liquid chromatography (HPLC) coupled with electrospray ion-trap mass spectrometry. AAPS J 8, 84 (2006). https://doi.org/10.1208/aapsj080484

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj080484

Keywords

Navigation