The AAPS Journal

, Volume 8, Issue 1, pp E174–E184 | Cite as

Symbiotic relationship of pharmacogenetics and drugs of abuse

  • Joni L. Rutter


Pharmacogenetics/pharmacogenomics is the study of how genetic variation affects pharmacology, the use of drugs to treat disease. When drug responses are predicted in advance, it is easier to tailor medications to different diseases and individuals. Pharmacogenetics provides the tools required to identify genetic predictors of probable drug response, drug efficacy, and drug-induced adverse events—identifications that would ideally precede treatment decisions. Drug abuse and addiction genetic data have advanced the field of pharmacogenetics in general. Although major findings have emerged, pharmacotherapy remains hindered by issues such as adverse events, time lag to drug efficacy, and heterogeneity of the disorders being treated. The sequencing of the human genome and high-throughput technologies are enabling pharmacogenetics to have greater influence on treatment approaches. This review highlights key studies and identifies important genes in drug abuse pharmacogenetics that provide a basis for better diagnosis and treatment of drug abuse disorders.


Pharmacogenomics addiction treatment psychiatric disease SNP 


  1. 1.
    Uhl GR, Grow RW. The burden of complex genetics in brain disorders.Arch Gen Psychiatry. 2004;61:223–229.PubMedCrossRefGoogle Scholar
  2. 2.
    Lichtermann D, Franke P, Maier W, Rao ML. Pharmacogenomics and addiction to opiates.Eur J Pharmacol. 2000;410:269–279.PubMedCrossRefGoogle Scholar
  3. 3.
    Berrettini W, Bierut L, Crowley T, et al. Letter—Setting priorities for genomic research.Science. 2004;304:1445–1447.PubMedCrossRefGoogle Scholar
  4. 4.
    Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes.Nat Rev Genet. 2005;6:521–532.PubMedCrossRefGoogle Scholar
  5. 5.
    Lessov CN, Swan GE, Ring HZ, Khroyan TV, Lernan C. Genetics and drug use as a complex phenotype.Subst Use Misuse. 2004;39:1515–1569.PubMedCrossRefGoogle Scholar
  6. 6.
    Hall WD. Will nicotine genetics and a nicotine vaccine prevent cigarette smoking and smoking-related diseases?PLoS Med. 2005;2:e266.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Merikangas KR, Risch N. Setting priorities for genomic research.Science. 2003;302:599–601.PubMedCrossRefGoogle Scholar
  8. 8.
    Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics.Science. 1999;286:487–491.PubMedCrossRefGoogle Scholar
  9. 9.
    Miksys S, Tyndale RF. Drug-metabolizing cytochrome P450s in the brain.J Psychiatry Neurosci. 2002;27:406–415.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Peto R. Smoking and death: the past 40 years and the next 40.BMJ. 1994;309:937–939.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Benowitz NL. Drug therapy: pharmacologic aspects of cigarette smoking and nicotine addiction.N Engl J Med. 1988;319:1318–1330.PubMedCrossRefGoogle Scholar
  12. 12.
    Bjartveit K, Tverdal A. Health consequences of smoking 1–4 cigarettes per day.Tob Control. 2005;14:315–320.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kawachi I, Colditz GA, Stampfer MJ, et al. Smoking cessation and time course of decreased risks of coronary heart disease in middle-agred women.Arch Intern Med. 1994;154;169–175.PubMedCrossRefGoogle Scholar
  14. 14.
    Rosengren A, Wilhelmsen L, Wedel H. Coronary heart disease, cancer and mortality in middle-aged light smokers.J Intern Med. 1992;231:357–362.PubMedCrossRefGoogle Scholar
  15. 15.
    Prescott E, Scharling H, Osler M, et al. Importance of light smoking and inhalation habits on risk of myocardial infarction and all cause mortality: a 22-year follow-up of 12,149 men and women in the Copenhagen city heart study.J Epidemiol Community Health. 2002;56:702–706.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Shiffman S, Fischer LB, Zettler-Segal M, Benowitz NL. Nicotine exposure among nondependent smokers.Arch Gen Psychiatry. 1990;47:333–336.PubMedCrossRefGoogle Scholar
  17. 17.
    Ellickson PL, McCaffrey DF, Ghosh-Dastidar B, Longshore DL. New inroads in preventing adolescent drug use: results from a largescale trial of project ALERT in middle schools.Am J Public Health. 2003;93:1830–1836.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hall W, Madden P, Lynskey M. The genetics of tobacco use: methods, findings and policy implications.Tob Control. 2002;11:119–124.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Tyndale RF. Genetics of alcohol and tobacco use in humans.Ann Med. 2003;35:94–121.PubMedCrossRefGoogle Scholar
  20. 20.
    Li MD, Cheng R, Ma JZ, Swan GE. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins.Addiction. 2003;98:23–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Bierut LJ, Rice JP, Edenberg HJ, et al. Family-based study of the association of the dopamine D2 receptor gene (DRD2) with habitual smoking.Am J Med Genet. 2000;90:299–302.PubMedCrossRefGoogle Scholar
  22. 22.
    Comings DE, Ferry L, Bradshaw-Robinson S, Burchette R, Chiu C, Muhleman D. The dopamine D2 receptor (DRD2) gene: a genetic risk factor in smoking.Pharmacogenetics. 1996;6:73–79.PubMedCrossRefGoogle Scholar
  23. 23.
    Beuten J, Ma JZ, Payne TJ, et al. Single- and multilocus allelic variants within the GABAB receptor subunit 2 (GABAB2) gene are significantly associated with nicotine dependence.Am J Hum Genet. 2005;76:859–864.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Vandenbergh DJ, Kozlowski LT, Bennett CJ, et al. DAT's not all, but it may be more than we realize.Nicotine Tob Res. 2002;4:251–252.PubMedCrossRefGoogle Scholar
  25. 25.
    Lerman C, Shields PG, Audrain J, et al. The role of the serotonin transporter gene in cigarette smoking.Cancer Epidemiol Biomarkers Prev. 1998;7:253–255.PubMedGoogle Scholar
  26. 26.
    Shields PG, Lerman C, Audrain J, et al. Dopamine D4 receptors and the risk of cigarette smoking in African-Americans and Caucasians.Cancer Epidemiol Biomarkers Prev. 1998;7:453–458.PubMedGoogle Scholar
  27. 27.
    Sabol SZ, Nelson ML, Fisher C, et al. A genetic association for cigarette smoking behavior.Health Psychol. 1999;18:7–13.PubMedCrossRefGoogle Scholar
  28. 28.
    Sullivan PF, Jiang Y, Neale MC, Kendler KS, Straub RE. Association of the tryptophan hydroxylase gene with smoking initiation but not progression in nicotine dependence.Am J Med Genet. 2001;105:479–484.PubMedCrossRefGoogle Scholar
  29. 29.
    Swan GE, Valdes AM, Ring HZ, et al. Dopamine receptorDRD2 genotype and smoking cessation outcome following treatment with bupropion SR.Pharmacogenomics J. 2005;5:21–29.PubMedCrossRefGoogle Scholar
  30. 30.
    McKinney EF, Walton RT, Yudkin P, et al. Association between polymorphisms in dopamine metabolic enzymes and tobacco consumption in smokers.Pharmacogenetics. 2000;10:483–491.PubMedCrossRefGoogle Scholar
  31. 31.
    Neville MJ, Johnstone EC, Walton RT. Identification and characterization ofANKK1: a novel kinase gene closely linked toDRD2 on chromosome band 11q23.1.Hum Mutat. 2004;23:540–545.PubMedCrossRefGoogle Scholar
  32. 32.
    Kreek MJ, Bart G, Lilly C, Laforge KS, Nielsen DA. Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments.Pharmacol Rev. 2005;57:1–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Xie W, Altamirano CV, Bartels CF, Speirs RJ, Cashman JR, Lockridge O. An improved cocaine hydrolase: the A328Y mutant of human butyrylcholinesterase is 4-fold more efficient.Mol Pharmacol. 1999;55:83–91.PubMedGoogle Scholar
  34. 34.
    Mogil JS, Miermeister F, Seifert F, et al. Variable senstivity to noxious heat is mediated by differential expression of theCGRP gene.Proc Natl Acad Sci USA. 2005;102:12938–12943PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Owens JC, Balogh SA, McClure-Begley TD, et al. Alpha 4 beta 2* nicotinic acetylcholine receptors modulate the effects of ethanol and nicotine on the acoustic startle response.Alcohol Clin Exp Res. 2003;27:1867–1875.PubMedCrossRefGoogle Scholar
  36. 36.
    Cohen C, Kodas E, Griebel G. CB1 receptor antagonists for the treatment of nicotine addiction.Pharmacol Biochem Behav. 2005;81:387–395.PubMedCrossRefGoogle Scholar
  37. 37.
    Castane A, Berrendero F, Maldonado, R. The role of the cannabinoid system in nicotine addiction.Pharmacol Biochem Behav. 2005;81:381–386.PubMedCrossRefGoogle Scholar
  38. 38.
    Zubieta JK, Heitzeg MM, Smith YR, et al. COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor.Science. 2003;299:1240–1243.PubMedCrossRefGoogle Scholar
  39. 39.
    Li T, Chen CK, Hu X et al. Association analysis of the DRD4 and COMT genes in methamphetamine abuse.Am J Med Genet B Neuropsychiatr Genet. 2004;129:120–124.CrossRefGoogle Scholar
  40. 40.
    Vandenbergh DJ, Rodriguez LA, Hivert E, et al. Long forms of the dopamine receptor (DRD4) gene VNTR are more prevalent in substance abusers: no interaction with functional alleles of the catechol-o-methyltransferase (COMT) gene.Am J Med Genet. 2000;96:678–683.PubMedCrossRefGoogle Scholar
  41. 41.
    Tyndale RF, Sellers EM. Variable CYP2A6-mediated nicotine metabolism alters smoking behavior and risk.Drug Metab Dispos. 2001;29:548–552.PubMedGoogle Scholar
  42. 42.
    Pianezza ML, Sellers EM, Tyndale RF. Nicotine metabolism defect reduces smoking.Nature. 1998;393:750.PubMedCrossRefGoogle Scholar
  43. 43.
    Gelernter J, Kranzler HR, Satel SL, Rao PA. Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia.Neuropsychopharmacology. 1994;11:195–200.PubMedCrossRefGoogle Scholar
  44. 44.
    Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expressionPharmacogenomics J. 2001;1:152–156.PubMedCrossRefGoogle Scholar
  45. 45.
    Lott DC Jr, Kim S-J Jr, Cook EH Jr, de Wit H. Dopamine transporter gene associated with diminished subjective response to amphetamine.Neuropsychopharmacology. 2005;30:602–609.PubMedCrossRefGoogle Scholar
  46. 46.
    Stein MA, Waldman ID, Sarampote CS, et al. Dopamine transporter genotype and methylphenidate dose response in children with ADHD.Neuropsychopharmacology. 2005;30:1374–1382.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen R, Han DD, Gu HH. A triple mutation in the second transmembrane domain of mouse dopamine transporter markedly decreases sensitivity to cocaine and methylphenidate.J Neurochem. 2005;94:352–359.PubMedCrossRefGoogle Scholar
  48. 48.
    Lerman C, Jepson C, Wileyto EP, et al. Role of Functional Genetic Variation in the Dopamine D2 Receptor (DRD2) in Response to bupropion and Nicotine Replacement Therapy for Tobacco Dependence: Results of Two Randomized Clinical Trials.Neuropsychopharmacology. 2006;31:231–242.PubMedGoogle Scholar
  49. 49.
    Xu K, Lichtermann D, Lipsky RH, et al. Association of specific haplotypes of D2 dopamine receptor gene with vulnerability to heroin dependence in 2 distinct populations.Arch Gen Psychiatry. 2004;61:597–606.PubMedCrossRefGoogle Scholar
  50. 50.
    Noble EP, Zhang X, Ritchie TL, Sparkes RS. Haplotypes at the DRD2 locus and severe alcoholism.Am J Med Genet. 2000;96:622–631.PubMedCrossRefGoogle Scholar
  51. 51.
    Gelernter J, Kranzler H. D2 dopamine receptor gene (DRD2) allele and haplotype frequencies in alcohol dependent and control subjects: no association with phenotype or severity of phenotype.Neuropsychopharmacology. 1999;20:640–649.PubMedCrossRefGoogle Scholar
  52. 52.
    Sander T, Ladehoff M, Samochowiec J, Finckh U, Rommelspacher H, Schmidt LG. Lack of an allelic association between polymorphisms of the dopamine D2 receptor gene and alcohol dependence in the German population.Alcohol Clin Exp Res. 1999;23:578–581.PubMedCrossRefGoogle Scholar
  53. 53.
    Gelernter J, Kranzler H, Satel SL. No association between D2 dopamine receptor (DRD2) alleles or haplotypes and cocaine dependence or severity of cocaine dependence in European- and African-Americans.Biol Psychiatry. 1999;45:340–345.PubMedCrossRefGoogle Scholar
  54. 54.
    Goldman D, Urbanek M, Guenther D, Robin R, Long JC. Linkage and association of a functional DRD2 variant [Ser311Cys] and DRD2 markers to alcoholism, substance abuse and schizophrenia in Southwestern American Indians.Am J Med Genet. 1997;74:386–394.PubMedCrossRefGoogle Scholar
  55. 55.
    Chen CK, Hu X, Lin SK, et al. Association analysis of dopamine D2-like receptor genes and methamphetamine abuse.Psychiatr Genet. 2004;14:223–226.PubMedCrossRefGoogle Scholar
  56. 56.
    Chang FM, Ko HC, Lu RB, Pakstis AJ, Kidd KK. The dopamine D4 receptor gene (DRD4) is not associated with alcoholism in three Taiwanese populations: six polymorphisms tested separately and as haplotypes.Biol Psychiatry. 1997;41:394–405.PubMedCrossRefGoogle Scholar
  57. 57.
    Nishiyama T, Ikeda M, Iwata N, et al. Haplotype association between GABAA receptor gamma2 subunit gene (GABRG2) and methamphetamine use disorder.Pharmacogenomics J. 2005;5:89–95.PubMedCrossRefGoogle Scholar
  58. 58.
    Hashimoto T, Hashimoto K, Matsuzawa D, et al. A functional glutathioneS-transferase P1 gene polymorphism is associated with methamphetamine-induced psychosis in Japanese population.Am J Med Genet B Neuropsychiatr Genet. 2005;135:5–9.CrossRefGoogle Scholar
  59. 59.
    Zimniak P, Nanduri B, Pikula S, et al. Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties.Eur J Biochem. 1994;224:893–899.PubMedCrossRefGoogle Scholar
  60. 60.
    Szumlinski KK, Abernathy KE, Oleson EB, et al. Homer isforms differentially regulate cocaine-induced neuroplasticity.Neuropsychopharmacology. 2005;14.Epub ahead of print.Google Scholar
  61. 61.
    Mogil JS, Ritchie J, Smith SB, et al. Melanocortin-1 receptor gene variants affect pain and mu-opioid analgesia in mice and humans.J Med Genet. 2005;42:583–587.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mogil JS, Wilson SG, Chesler EJ, et al. The melanocortin-1 receptor gene mediates female-specific mechanisms of analgesia in mice and humans.Proc Natl Acad Sci USA. 2003;100:4867–4872.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kim H, Neubert JK, San MA, et al. Genetic influences on variability in human acute experimental pain sensitivity associated with gender, ethnicity and psychological temperament.Pain. 2004;109:488–496.PubMedCrossRefGoogle Scholar
  64. 64.
    Lerman C, Wileyto EP, Patterson F, et al. The functional muopioid receptor (OPRM1) Asn40Asp variant predicts short-term response to nicotine replacement therapy in a clinical trial.Pharmacogenomics J. 2004;4:184–192.PubMedCrossRefGoogle Scholar
  65. 65.
    Gelernter J, Kranzler H, Cubells J. Genetics of two μ opioid receptor gene (OPRM1) exon 1 polymorphisms: population studies, and allele frequencies in alcohol- and drug-dependent subjects.Mol Psychiatry. 1999;4:476–483.PubMedCrossRefGoogle Scholar
  66. 66.
    Bart G, Heilig M, LaForge KS, et al. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden.Mol Psychiatry. 2004;9:547–549.PubMedCrossRefGoogle Scholar
  67. 67.
    Bond C, LaForge KS, Tian M, et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction.Proc Natl Acad Sci USA. 1998;95:9608–9613.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling.J Biol Chem. 2001;276:3130–3137.PubMedCrossRefGoogle Scholar
  69. 69.
    Beyer A, Kock T, Schroder H, Schulz S, Hollt V. Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor.J Neurochem. 2004;89:553–560.PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang Y, Wang D, Johnson AD, Papp AC, Sadee W. Allelic expression imbalance of human mu opioid receptor (OPRM1) caused by variant A118G.J Biol Chem. 2005;280:32618–32624.PubMedCrossRefGoogle Scholar
  71. 71.
    Oslin DW, Berrettini W, Kranzler HR, et al. A functional polymorphism of the μ-opioid receptor gene is associated with naltrexone response in alcohol-dependent patients.Neuropsychopharmacology. 2003;28:1546–1552.PubMedCrossRefGoogle Scholar
  72. 72.
    Lotsch J, Skarke C, Grosch S, Darimont J, Schmidt H, Geisslinger G. The polymorphism A118G of the human mu-opioid receptor gene decreases the pupil constrictory effect of morphine-6-glucuronide but not that of morphine.Pharmacogenetics. 2002;12:3–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Fillingim RB, Kaplan L, Staud R, et al. The A118G single nucleotide polymorphism of the mu-opioid receptor gene (OPRM1) is associated with pressure pain sensitivity in humans.J Pain. 2005;6:159–167.PubMedCrossRefGoogle Scholar
  74. 74.
    Fiore MC. Treating tobacco use and dependence: an introduction to the US Public Health Service Clinical Practice Guideline.Respir Care. 2000;45:1196–1199.PubMedGoogle Scholar
  75. 75.
    National Institute on Drug Abuse. Research Report Series: Nicotine Addiction. NIH Publ No 01-4342 2001. Bethesda, MD: NIDA. Available at: <>. Accessed February 23, 2006.Google Scholar
  76. 76.
    Fiore MC, Smith SS, Jorenby DE, Baker TB. The effectiveness of the nicotine patch for smoking cessation: a meta-analysis.JAMA. 1994;271:1940–1947.PubMedCrossRefGoogle Scholar
  77. 77.
    Paoletti P, Fornai E, Maggiorelli F, et al. Importance of baseline cotinine plasma values in smoking cessation: results from a double-blind study with nicotine patch.Eur Respir J. 1996;9:643–651.PubMedCrossRefGoogle Scholar
  78. 78.
    Pickworth WB, Fant RV, Butschky MF, Henningfield JE. Effects of transdermal nicotine delivery on measures of acute nicotine withdrawal.J Pharmacol Exp Ther. 1996;279:450–456.PubMedGoogle Scholar
  79. 79.
    Foulds J, Burke M, Steinberg M, Williams JM, Ziedonis DM. Advances in pharmacotherapy for tobacco dependence.Expert Opin Emerg Drugs. 2004;9:39–53.PubMedCrossRefGoogle Scholar
  80. 80.
    Anthenelli RM. Rimonabant helps for smoking cessation, weight loss. ACC 53rd Annual Scientific Session: Late-Breaking Clinical Trials; March 9, 2004; New Orleans, LA.Google Scholar
  81. 81.
    Heading CE. Nic VAX Nabi Biopharmaceuticals.IDrugs. 2003;6:1178–1181.PubMedGoogle Scholar
  82. 82.
    Cerny T. Anti-nicotine vaccination: where are we now?Recent Results Cancer Res. 2005;166:167–175.PubMedCrossRefGoogle Scholar
  83. 83.
    Hatsukami DK, Rennard S, Jorenby D, et al.. Safety and immunogenicity of a nicotine conjugate vaccine in current smokers.Clin Pharmacol Ther. 2005;78:456–467.PubMedCrossRefGoogle Scholar
  84. 84.
    Dale LC, Glover ED, Sachs DP, et al. Bupropion for smoking cessation: predictors of successful outcome.Chest. 2001;119:1357–1364.PubMedCrossRefGoogle Scholar
  85. 85.
    Merikangas KR, Stolar M, Stevens DE, et al. Familial transmission of substance use disorders.Arch Gen Psychiatry. 1998;55:973–979.PubMedCrossRefGoogle Scholar
  86. 86.
    Tsuang MT, Lyons MJ, Meyer JM, et al. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities.Arch Gen Psychiatry. 1998;55:967–972.PubMedCrossRefGoogle Scholar
  87. 87.
    Regier DA, Farmer ME, Rae DS, et al. Comorbidity of mental disorders with alcohol and other drug abuse: results from the Epidemiology Catchment Area (ECA) study.JAMA. 1990;264:2511–2518.PubMedCrossRefGoogle Scholar
  88. 88.
    Ikeda K, Soichiro I, Han W, Hayashida M, Uhl GR, Sora I. How individual sensitivity to opiates can be predicted by gene analyses.Trends Pharmacol Sci. 2005;26:311–317.PubMedCrossRefGoogle Scholar
  89. 89.
    Ross JR, Rutter D, Welsh K, et al. Clinical response to morphine in cancer patients and genetic variation in candidate genes.Pharmacogenomics J. 2005;5:324–336.PubMedCrossRefGoogle Scholar
  90. 90.
    Tiseo PJ, Thaler HT, Lapin J, Inturrisi CE, Portenoy RK, Foley KM. Morphine-6-glucuronide concentrations and opioid-related side effects: a survey in cancer patients.Pain. 1995;61:47–54.PubMedCrossRefGoogle Scholar
  91. 91.
    MacGregor AJ, Griffiths GO, Baker J, Spector TD. Determinants of pressure pain threshold in adult twins: evidence that shared environmental influences predominate.Pain. 1997;73:253–257.PubMedCrossRefGoogle Scholar
  92. 92.
    Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex.Science. 1997;277:968–971.PubMedCrossRefGoogle Scholar
  93. 93.
    Snyder SH. Amphetamine psychosis: a “model” schizophrenia mediated by catecholamines.Am J Psychiatry. 1973;130:61–67.PubMedCrossRefGoogle Scholar
  94. 94.
    Sato M, Chen CC, Akiyama K, Otsuki S. Acute exacerbation of paranoid psychotic state after long-term abstinence in patients with previous methamphetamine psychosis.Biol Psychiatry. 1983;18:429–440.PubMedGoogle Scholar
  95. 95.
    Volkow ND. Message from the Director on Amphetamine Abuse. Available at: html. Accessed February 23, 2006.Google Scholar
  96. 96.
    Kendler KS, Karkowski LM, Neale MC, Prescott CA. Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins.Arch Gen Psychiatry. 2000;57:261–269.PubMedCrossRefGoogle Scholar
  97. 97.
    Tsuang MT, Lyons MJ, Eisen SA, et al. Genetic influences on DSM-III-R drug abuse and dependence: a study of 3,372 twin pairs.Am J Med Genet. 1996;67:473–477.PubMedCrossRefGoogle Scholar
  98. 98.
    Leshner AI. Addiction is a brain disease, and it matters.Science. 1997;278:45–47.PubMedCrossRefGoogle Scholar
  99. 99.
    Merikangas KR, Risch N. Will the genomics revolution revolutionize psychiatry?Am J Psychiatry. 2003;160:625–635.PubMedCrossRefGoogle Scholar
  100. 100.
    Croghan TW, Tomlin M, Pescosolido BA, et al. American attitudes toward and willingness to use psychiatric medications.J Nerv Ment Dis. 2003;191:166–174.PubMedGoogle Scholar
  101. 101.
    Nunes EV, Levin FR. Treatment of depression in patients with alcohol or other drug dependence: a meta-analysis.JAMA. 2004;291:1887–1896.PubMedCrossRefGoogle Scholar
  102. 102.
    Kendler KS, Jacobson KC, Prescott CA, Neale MC. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins.Am J Psychiatry. 2003;160:687–695.PubMedCrossRefGoogle Scholar
  103. 103.
    Bierut LJ, Rice JP, Goate A, et al. A genomic scan for habitual smoking in families of alcoholics: common and specific genetic factors in substance dependence.Am J Med Genet A. 2004;124:19–27.CrossRefGoogle Scholar
  104. 104.
    Frueh FW, Goodsaid F, Rudman A, Huang S-M, Lesko LJ. The need for education in pharmacogenomics: a regulatory perspective.Pharmacogenomics J. 2005;5:218–220.PubMedCrossRefGoogle Scholar
  105. 105.
    Rubin DL, Thorn C, Klein TE, Altman RB. A statistical approach to scanning the biomedical literature for pharmacogenetics knowledge.J Am Med Inform Assoc. 2005;12:121–129.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2006

Authors and Affiliations

  1. 1.Department of Health and Human ServicesNational Institute on Drug Abuse, National Institutes of HealthBethesda

Personalised recommendations