Advertisement

AAPS PharmSciTech

, 20:311 | Cite as

A Multiscale Study on the Effect of Sodium Cholate on the Deformation Ability of Elastic Liposomes

  • Zhimin Wu
  • Chang Yang
  • Liping Chen
  • Lina Ma
  • Xiaowen Wu
  • Xingxing Dai
  • Yanjiang QiaoEmail author
  • Xinyuan ShiEmail author
Review Article

Abstract

Elastic liposoxy1mes (ELs) are biocompatible bilayer vesicular systems commonly used in the transdermal delivery of drugs. Compared with conventional liposomes (CLs), the strong deformation ability conferred by edge activators (EAs) is one of the most critical properties of ELs. However, due to limited research methods, little is known about the effect of EAs on the deformation abilities of vesicles. In this study, taking sodium cholate as an example, a multiscale study was carried to study the effect of EAs on the deformability of ELs, including in vitro diffusion experiment at macroscale, “vesicle-pore” model experiment at the microscale and flat patch model experiment at the molecular scale. As a result, it was found that sodium cholate could decrease the kc of DPPC bilayer, which enabled it to remain morphologically intact during a strong deformation process. Such kind of differences on deformation ability made pogostone ELs (contain sodium cholate) present a better permeation effect compared with that of pogostone CLs. All of these provide a multiscale and thorough understanding of the effect of sodium cholate on the deformation ability of ELs.

Keywords

Deformation ability Elastic liposomes Transdermal drug delivery "Vesicle-pore" model Sodium cholate 

Notes

Acknowledgments

The content is solely the responsibility of the authors and does not necessarily represent the official views of the Beijing Natural Science Foundation. All simulations were performed at the National Supercomputer Center in Guangzhou.

Funding information

This work was financially supported by the Beijing Natural Science Foundation (7162122).

Supplementary material

12249_2019_1485_MOESM1_ESM.pdf (171 kb)
ESM 1 (PDF 170 kb)
12249_2019_1485_MOESM2_ESM.png (131 kb)
ESM 2 PMF profile and vesicle morphology comparison of 5 Groups with different combination of rv and rp. (PNG 130 kb)

References

  1. 1.
    Benson HA. Elastic liposomes for topical and transdermal drug delivery. Curr Drug Delivery. 2009;6(3):217–26.CrossRefGoogle Scholar
  2. 2.
    Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine. 2017;12:5087–08.CrossRefGoogle Scholar
  3. 3.
    Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech. 2013;14(1):133–40.CrossRefGoogle Scholar
  4. 4.
    Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B, et al. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58–71.CrossRefGoogle Scholar
  5. 5.
    Utreja P, Jain S, Tiwary AK. Evaluation of biosafety and intracellular uptake of Cremophor EL free paclitaxel elastic liposomal formulation. Drug Deliv. 2012;19(1):11–20.CrossRefGoogle Scholar
  6. 6.
    Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040–6.CrossRefGoogle Scholar
  7. 7.
    Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012;8(2):237–49.CrossRefGoogle Scholar
  8. 8.
    Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta Biomembr. 1992;1104(1):226–32.CrossRefGoogle Scholar
  9. 9.
    Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta Biomembr. 1998;1368(2):201–15.CrossRefGoogle Scholar
  10. 10.
    Chen J, Lu WL, Gu W, Lu SS, Chen ZP, Cai BC. Skin permeation behavior of elastic liposomes: role of formulation ingredients. Expert Opin Drug Deliv. 2013;10(6):845–56.CrossRefGoogle Scholar
  11. 11.
    Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3(6):727–37.CrossRefGoogle Scholar
  12. 12.
    Al Shuwaili AH, Rasool BK, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm. 2016;102:101–14.CrossRefGoogle Scholar
  13. 13.
    Subongkot T, Pamornpathomkul B, Rojanarata T, Opanasopit P, Ngawhirunpat T. Investigation of the mechanism of enhanced skin penetration by ultradeformable liposomes. Int J Nanomedicine. 2014;9:3539–50.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Zhang YT, Xu YM, Zhang SJ, Zhao JH, Wang Z, Xu DQ, et al. In vivo microdialysis for the evaluation of transfersomes as a novel transdermal delivery vehicle for cinnamic acid. Drug Dev Ind Pharm. 2014;40(3):301–7.CrossRefGoogle Scholar
  15. 15.
    Ntimenou V, Fahr A, Antimisiaris SG. Elastic vesicles for transdermal drug delivery of hydrophilic drugs: a comparison of important physicochemical characteristics of different vesicle types. J Biomed Nanotechnol. 2012;8(4):613–23.CrossRefGoogle Scholar
  16. 16.
    Alvi IA, Madan J, Kaushik D, Sardana S, Pandey RS, Ali A. Comparative study of transfersomes, liposomes, and niosomes for topical delivery of 5-fluorouracil to skin cancer cells: preparation, characterization, in-vitro release, and cytotoxicity analysis. Anti-Cancer Drugs. 2011;22(8):774–82.CrossRefGoogle Scholar
  17. 17.
    Duangjit S, Obata Y, Sano H, Onuki Y, Opanasopit P, Ngawhirunpat T, et al. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull. 2014;37(2):239–47.CrossRefGoogle Scholar
  18. 18.
    El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1–2):164–72.CrossRefGoogle Scholar
  19. 19.
    Jain SK, Gupta Y, Jain A, Rai K. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes. Drug Deliv. 2008;15(3):141–7.CrossRefGoogle Scholar
  20. 20.
    Uchino T, Lefeber F, Gooris G, Bouwstra J. Characterization and skin permeation of ketoprofen-loaded vesicular systems. Eur J Pharm Biopharm. 2014;86(2):156–66.CrossRefGoogle Scholar
  21. 21.
    Gonzalez-Rodriguez ML, Arroyo CM, Cozar-Bernal MJ, Gonzalez RP, Leon JM, Calle M, et al. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Dev Ind Pharm. 2016;42(10):1683–94.CrossRefGoogle Scholar
  22. 22.
    Marrink SJ, Corradi V, Souza PCT, Ingolfsson HI, Tieleman DP, Sansom MSP. Computational modeling of realistic cell membranes. Chem Rev. 2019;119:6184–226.CrossRefGoogle Scholar
  23. 23.
    Hossain MS, Berg S, Bergstrom CAS, Larsson P. Aggregation behavior of medium chain fatty acids studied by coarse-grained molecular dynamics simulation. AAPS PharmSciTech. 2019;20(2):61.CrossRefGoogle Scholar
  24. 24.
    Watson MC, Morriss-Andrews A, Welch PM, Brown FL. Thermal fluctuations in shape, thickness, and molecular orientation in lipid bilayers. II. Finite surface tensions. J Chem Phys. 2013;139(8):084706.CrossRefGoogle Scholar
  25. 25.
    Watson MC, Brandt EG, Welch PM, Brown FL. Determining biomembrane bending rigidities from simulations of modest size. Phys Rev Lett. 2012;109(2):028102.CrossRefGoogle Scholar
  26. 26.
    Levine ZA, Venable RM, Watson MC, Lerner MG, Shea JE, Pastor RW, et al. Determination of biomembrane bending moduli in fully atomistic simulations. J Am Chem Soc. 2014;136(39):13582–5.CrossRefGoogle Scholar
  27. 27.
    Leonard AN, Wang E, Monje-Galvan V, Klauda JB. Developing and testing of lipid force fields with applications to modeling cellular membranes. Chem Rev. 2019;119:6227–69.CrossRefGoogle Scholar
  28. 28.
    Brannigan G, Brown FL. A consistent model for thermal fluctuations and protein-induced deformations in lipid bilayers. Biophys J. 2006;90(5):1501–20.CrossRefGoogle Scholar
  29. 29.
    Arnarez C, Uusitalo JJ, Masman MF, Ingolfsson HI, de Jong DH, Melo MN, et al. Dry martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J Chem Theory Comput. 2015;11(1):260–75.CrossRefGoogle Scholar
  30. 30.
    Marrink SJ, de Vries AH, Mark AE. Coarse grained model for semiquantitative lipid simulations. J Phys Chem B. 2004;108(2):750–60.CrossRefGoogle Scholar
  31. 31.
    Ma L, Wu Z, Yang C, Guo S, Chen L, Qiao Y, et al. Preparation and quaility evaluation of pogostone transfersomes. China Pharmacy. 2019;30(01):50–4.Google Scholar
  32. 32.
    Chen H, Li Y, Wu X, Li C, Li Q, Qin Z, et al. LC-MS/MS determination of pogostone in rat plasma and its application in pharmacokinetic studies. Biomed Chromatogr. 2013;27(9):1092–9.CrossRefGoogle Scholar
  33. 33.
    Wang X, Zou Y, Wang Y. GC-MS assay for the determination of pogostone in essential oil of herba pogostemis. Chinese Journal of Pharmaceutical Analysis. 2005;30(5):546–9.Google Scholar
  34. 34.
    Cheng X, Jo S, Lee HS, Klauda JB, Im W. CHARMM-GUI micelle builder for pure/mixed micelle and protein/micelle complex systems. Journal of Chemical Information & Modeling. 2013;53(8):2171–80.CrossRefGoogle Scholar
  35. 35.
    Martínez L, Andrade R, Birgin EG, Martínez JM. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem. 2010;30(13):2157–64.CrossRefGoogle Scholar
  36. 36.
    David VDS, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2010;26(16):1701–18.Google Scholar
  37. 37.
    Harmandaris VA, Deserno M. A novel method for measuring the bending rigidity of model lipid membranes by simulating tethers. J Chem Phys. 2006;125(20):204905.CrossRefGoogle Scholar
  38. 38.
    Khelashvili G, Kollmitzer B, Heftberger P, Pabst G, Harries D. Calculating the bending modulus for multicomponent lipid membranes in different thermodynamic phases. J Chem Theory Comput. 2013;9(9):3866–71.CrossRefGoogle Scholar
  39. 39.
    Garcia RS, Bezlyepkina N, Knorr RL, Lipowsky R, Dimova R. Effect of cholesterol on the rigidity of saturated and unsaturated membranes: fluctuation and electrodeformation analysis of giant vesicles. Soft Matter. 2010;6(7):1472–82.CrossRefGoogle Scholar
  40. 40.
    Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997;73(1):267–76.CrossRefGoogle Scholar
  41. 41.
    Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000;79(1):328–39.CrossRefGoogle Scholar
  42. 42.
    Stephanie TN, Nagle JF. HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys J. 2007;93(6):2048–55.CrossRefGoogle Scholar
  43. 43.
    Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010;114(23):7830–43.CrossRefGoogle Scholar
  44. 44.
    Braun AR, Sachs JN, Nagle JF. Comparing simulations of lipid bilayers to scattering data: the GROMOS 43A1-S3 force field. J Phys Chem B. 2013;117(17):5065–72.CrossRefGoogle Scholar
  45. 45.
    Melo MN, Ingólfsson HI, Marrink SJ. Parameters for martini sterols and hopanoids based on a virtual-site description. J Chem Phys. 2015;143(24):243152.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Zhimin Wu
    • 1
    • 2
  • Chang Yang
    • 1
  • Liping Chen
    • 1
  • Lina Ma
    • 1
    • 2
  • Xiaowen Wu
    • 1
  • Xingxing Dai
    • 1
    • 2
  • Yanjiang Qiao
    • 1
    • 2
    Email author
  • Xinyuan Shi
    • 1
    • 2
    Email author
  1. 1.Department of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
  2. 2.Key Laboratory of TCM-Information Engineering of State Administration of TCMBeijingChina

Personalised recommendations