AAPS PharmSciTech

, 20:251 | Cite as

Quality-by-Design Approach for Biological API Encapsulation into Polymersomes Using “Off-the-Shelf” Materials: a Study on L-Asparaginase

  • Alexsandra Conceição Apolinário
  • Rafael Bertelli Ferraro
  • Camila Areias de Oliveira
  • Adalberto Pessoa Jr
  • Carlota de Oliveira Rangel-YaguiEmail author
Research Article


Polymersomes are versatile nanostructures for protein delivery with hydrophilic core suitable for large biomolecule encapsulation and protective stable corona. Nonetheless, pharmaceutical products based on polymersomes are not available in the market, yet. Here, using commercially available copolymers, we investigated the encapsulation of the active pharmaceutical ingredient (API) L-asparaginase, an enzyme used to treat acute lymphoblastic leukemia, in polymersomes through a quality-by-design (QbD) approach. This allows for streamlining of processes required for improved bioavailability and pharmaceutical activity. Polymersomes were prepared by bottom-up (temperature switch) and top-down (film hydration) methods employing the diblock copolymers poly(ethylene oxide)–poly(lactic acid) (PEG45-PLA69, PEG114-PLA153, and PEG114-PLA180) and the triblock Pluronic® L-121 (poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide), PEG5-PPO68-PEG5). Quality Target Product Profile (QTPP), Critical Quality Attributes (CQAs), Critical Process Parameters (CPPs), and the risk assessment were discussed for the early phase of polymersome development. An Ishikawa diagram was elaborated focusing on analytical methods, raw materials, and processes for polymersome preparation and L-asparaginase encapsulation. PEG-PLA resulted in diluted polymersomes systems. Nonetheless, a much higher yield of Pluronic® L-121 polymersomes of 200 nm were produced by temperature switch, reaching 5% encapsulation efficiency. Based on these results, a risk estimation matrix was created for an initial risk assessment, which can help in the future development of other polymersome systems with biological APIs nanoencapsulated.


self-assembly L-asparaginase encapsulation amphiphilic block copolymers polymersomes biologics 



We acknowledge support from the State of São Paulo Research Foundation (FAPESP-Brazil) projects 2013/08617-7 (Thematic project), 2014/10456-4 and 2017/03811-0 (Apolinário, A.C. PhD fellowships), and 2016/03887-4 (Oliveira, C.A. Post-Doctoral Fellowship), Coordination for the Improvement of Higher Education Personnel (CAPES, Project 001), and the National Council for Scientific and Technological Development (CNPq-Brazil, project 303334/2014-2). We are in debt with Dr. Monika S. Magón for the enlightening discussions and text reading. Additionally, we thank the BASF Brazil for Pluronic® L-121 donations.

Supplementary material

12249_2019_1465_MOESM1_ESM.docx (290 kb)
ESM 1 (DOCX 290 kb)


  1. 1.
    Ali U, Naveed M, Ullah A, Ali K, Shah SA, Fahad S, et al. L-Asparaginase as a critical component to combat acute lymphoblastic leukaemia (ALL): a novel approach to target ALL. Eur J Pharmacol. 2016;771:199–210.PubMedCrossRefGoogle Scholar
  2. 2.
    Apolinário AC, Almeida Pachioni-Vasconcelos J, Pessoa A, Rangel-Yagui CO. Polymersomes versus liposomes: the “magic bullet” evolution. Quim Nova. 2017;4(7):810–7.Google Scholar
  3. 3.
    Apolinário AC, Magoń MS, Pessoa A, Rangel-Yagui CO. Challenges for the self-assembly of poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) into polymersomes: beyond the theoretical paradigms. Nanomaterials. 2018;8(6):1–16.CrossRefGoogle Scholar
  4. 4.
    Bartenstein JE, Robertson J, Battaglia G, Briscoe WH. Stability of polymersomes prepared by size exclusion chromatography and extrusion. Colloids Surfaces A Physicochem Eng Asp. 2016;506:739–46.CrossRefGoogle Scholar
  5. 5.
    Blackman LD, Varlas S, Arno MC, Houston ZH, Fletcher NL, Thurecht KJ, et al. Confinement of therapeutic enzymes in selectively permeable polymer vesicles by polymerization-induced self-assembly (PISA) reduces antibody binding and proteolytic susceptibility. ACS Cent Sci. 2018;4(6):718–23.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bleul R, Thiermann R, Maskos M. Techniques to control polymersome size. Macromolecules. 2015;48(20):7396–409.CrossRefGoogle Scholar
  8. 8.
    Cheng X, Kim JK, Kim Y, Bowie JU, Im W. Molecular dynamics simulation strategies for protein-micelle complexes. Biochim Biophys Acta Biomembr. 2016;1858(7):1566–72.CrossRefGoogle Scholar
  9. 9.
    Contini C, Pearson R, Wang L, Rizzello L, Ruiz-perez L, Contini C, et al. Bottom-up evolution of vesicles from disks to bottom-up evolution of vesicles from disks to high-genus polymersomes. iScience. 2018;7:132–44.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Cruz MEM, Gaspar MM. Liposomal L-asparaginase: in vitro evaluation. Int J Pharm. 1993;96(1–3):67–77.CrossRefGoogle Scholar
  11. 11.
    Danaei M, Dehghankhold M, Ataei S, Davarani FH, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):1–17.CrossRefGoogle Scholar
  12. 12.
    David P, Morbidelli M. Process for protein PEGylation. J Control Release. 2014;180:134–49.CrossRefGoogle Scholar
  13. 13.
    Dionzou M, Morère A, Roux C, Lonetti B, Marty J-D, Mingotaud C, et al. Comparison of methods for the fabrication and the characterization of polymer self-assemblies: what are the important parameters? Soft Matter. 2016;12(7):2166–76.PubMedCrossRefGoogle Scholar
  14. 14.
    Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng. 2006;8:323–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Discher BM, Won YY, Ege DS, Lee JC, Bates FS, Discher DE, et al. Polymersomes: tough vesicles made from diblock copolymers. Science. 1999;284(5417):1143–6.PubMedCrossRefGoogle Scholar
  16. 16.
    European Medicines Agency (EMA), 2012. ICH guideline Q11 on development and manufacture of drug substances (chemical entities and biotechnological/biological entities) pp. 29. November 2012. (Accessed 10 Sept 2018).
  17. 17.
    European Medicines Agency (EMA), 2017. ICH guideline Q11 on development and manufacture of drug substances (chemical entities and biotechnological/biological entities)—questions and answers, pp. 20. 1 September 2017. (Accessed 10 Sept 2018).
  18. 18.
    FDA, 2017. FDA guidance for industry (draft): drug products, including biological products, that contain nanomaterials guidance for industry drug products, including biological products, that contain nanomaterials (December 2017). (Accessed 1 Oct 2018).
  19. 19.
    Flühmann B, Ntai I, Brorchard G, Simoens S, Mühlebach S. Nanomedicines: the magic bullets reaching their target? Eur J Pharm Sci. 2018; In press article.Google Scholar
  20. 20.
    Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Han H. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–92.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Hirst, N.C., 2008. Solvency effects on polymer surfactant interactions. Thesis. Cardiff University Wales, UK.Google Scholar
  24. 24.
    ICH, 2005. International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised tripartite guideline: quality risk management Q9 (Accessed 15 Oct 2018).
  25. 25.
    ICH, 2008. International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised tripartite guideline: pharmaceutical quality systems (Q10) (Accessed 15 Oct 2018).
  26. 26.
    ICH, 2009. International Conference on Harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised tripartite guideline: pharmaceutical development Q8(R2) (Accessed 15 Oct 2018).
  27. 27.
    Joseph A, Contini C, Cecchin D, Nyberg S, Ruiz-perez L, Gaitzsch J, et al. Chemotactic synthetic vesicles: design and applications in blood-brain barrier crossing. Sci Adv. 2017;3(8):1–3.CrossRefGoogle Scholar
  28. 28.
    Li F, Haan LHJ, Marcelis ATM, Leermakers FAM, Cohen Stuart MA, Sudhölter EJR, et al. Pluronic polymersomes stabilized by core cross-linked polymer micelles. Soft Matter. 2009;5(20):4042–6.CrossRefGoogle Scholar
  29. 29.
    Maruyama T, Izaki S, Kurinomaru T, Handa K, Kimoto T, Shiraki K. Protein-poly (amino acid) precipitation stabilizes a therapeutic protein L-asparaginase against physicochemical stress. J Biosci Bioeng. 2015;120(6):720–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Messager L, Gaitzsch J, Chierico L, Battaglia G. Novel aspects of encapsulation and delivery using polymersomes. Curr Opin Pharmacol. 2014;18:104–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Paliwal R, Babu RJ, Palakurthi S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech. 2014;15(6):1527–34.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Pallagi E, Ambrus R, Szabó-révész P, Csóka I. Adaptation of the quality by design concept in early pharmaceutical development of an intranasal nanosized formulation. Int J Pharm. 2015;491(1–2):384–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Pallagi E, Ismail R, Paál TL, Csóka I. Initial risk assessment as part of the quality by design in peptide drug containing formulation development. Eur J Pharm Sci. 2018;122:160–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Pelaz B, Del Pino P, Maffre P, Hartmann R, Gallego M, Rivera-Fernández S, et al. Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano. 2015;9(7):6996–7008.PubMedCrossRefGoogle Scholar
  35. 35.
    Place AE, Stevenson KE, Vrooman LM, Harris MH, Hunt SK, Brien JEO, et al. Intravenous pegylated asparaginase versus intramuscular native Escherichia coli L-asparaginase in newly diagnosed childhood acute lymphoblastic leukaemia (DFCI 05-001): a randomised , open-label phase 3 trial. Lancet. 2015;16(16):1677–90.PubMedCrossRefGoogle Scholar
  36. 36.
    Qi H, Zhou H, Tang Q, Lee JY, Fan Z, Kim S, et al. Block copolymer crystalsomes with an ultrathin shell to extend blood circulation time. Nat Commun. 2018;9:1–10.CrossRefGoogle Scholar
  37. 37.
    Rodríguez-García R, Mell M, López-Montero I, Netzel J, Hellweg T, Monroy F. Polymersomes: smart vesicles of tunable rigidity and permeability. Soft Matter. 2011;7(4):1532.CrossRefGoogle Scholar
  38. 38.
    Shrivastava A, Arif A, Khurshid M, Abul M, Jain SK, Singhal PK. Recent developments in l-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol/Hematol. 2016;100(1–10):1–10.CrossRefGoogle Scholar
  39. 39.
    Simões A, Veiga F, Figueiras A, Vitorino C. A practical framework for implementing quality by design to the development of topical drug products: nanosystem-based dosage forms. Int J Pharm. 2018;548(1):385–99.PubMedCrossRefGoogle Scholar
  40. 40.
    Sueyoshi D, Anraku Y, Komatsu T, Urano Y, Kataoka K. Enzyme-loaded polyion complex vesicles as in vivo nanoreactors working sustainably under the blood circulation: characterization and functional evaluation. Biomacromolecules. 2017;18(4):1189–96.PubMedCrossRefGoogle Scholar
  41. 41.
    Tantra R, Schulze P, Quincey P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology. 2010;8(3):279–85.CrossRefGoogle Scholar
  42. 42.
    Wang L, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, et al. Encapsulation of biomacromolecules within polymersomes by electroporation. Angew Chemie Int Ed. 2012;51(44):11122–5.CrossRefGoogle Scholar
  43. 43.
    Wolf M, Wirth M, Pittner F, Gabor F. Stabilisation and determination of the biological activity of l-asparaginase in poly(d,l-lactide-co-glycolide) nanospheres. Int J Pharm. 2003;256(1–2):141–52.PubMedCrossRefGoogle Scholar
  44. 44.
    Wong CK, Laos AJ, Soeriyadi AH, Wiedenmann J, Curmi PMG, Gooding JJ, et al. Polymersomes prepared from thermoresponsive fluorescent protein-polymer bioconjugates: capture of and report on drug and protein payloads. Angew Chemie Int Ed. 2015;54(18):5317–22.CrossRefGoogle Scholar
  45. 45.
    Xu X, Costa AP, Khan MA, Burgess DJ. Application of quality by design to formulation and processing of protein liposomes. Int J Pharm. 2012;434(1–2):349–59.PubMedCrossRefGoogle Scholar
  46. 46.
    Yu LX, Amidon G, Khan MA, Hoag SW, Polli J, Raju GK, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771–83.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zelikin AN, Ehrhardt C, Healy AM. Materials and methods for delivery of biological drugs. Nat Chem. 2016;8(11):997–1007.PubMedCrossRefGoogle Scholar
  48. 48.
    Robertson JD, Yealland G, Avila-Olias M, Chierico L, Bandmann O, Renshaw S A, et al. pH-sensitive tubular polymersomes: formation and applications in cellular delivery. ACS Nano. 2014;8:4650–4661PubMedCrossRefGoogle Scholar
  49. 49.
    Meglič HS, Kotnik T. Electroporation-Based Applications in Biotechnology. In: Miklavčič D. (eds) Handbook of Electroporation. Springer: Cham; 2017. p. 2153–2169Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Alexsandra Conceição Apolinário
    • 1
  • Rafael Bertelli Ferraro
    • 1
  • Camila Areias de Oliveira
    • 1
  • Adalberto Pessoa Jr
    • 1
  • Carlota de Oliveira Rangel-Yagui
    • 1
    Email author
  1. 1.Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical SciencesUniversity of São PauloSão PauloBrazil

Personalised recommendations