Advertisement

AAPS PharmSciTech

, 20:309 | Cite as

A Non-innocent Magnesium Organoclay-Based Drug Vehicle for Improving the Cancer Therapy Effect of Methotrexate

  • Jinyu Li
  • Sen Qiao
  • Guoxin Tan
  • Yibin Yu
  • Dandan Liu
  • Weisan PanEmail author
Research Article
  • 7 Downloads

Abstract

A synthetic, dispersible magnesium aminoclay (MgAC) was synthesized in the present study. Besides, structural and spectroscopic detections were conducted to investigate the MgAC nanoclay. With a poor aqueous solubility, methotrexate (MTX) has been applied as a valid antitumor agent in recent years. In our research, an unobtrusive sol-gel process was carried out to manufacture the MgAC-MTX nanohybrids through entrapment of MTX over MgAC in situ. The final product was capable of desquamating and thus dispersed in water, equably. In comparison with rough MTX, the MgAC-MTX nanocomposite with a preferable treatment efficacy against MCF-7 cells was mainly attributed to the preeminent enhanced aqueous solubility, controlled release and the increased cellular uptake capacity. Moreover, with excellent anticancer function and hypotoxicity as vindicated in vivo, the MgAC-MTX nanohybrid was supposed to own the potency in the application of malignant tumors cure as a valid nanomedicine. It turned out that, by virtue of its high bioavailability, the MgAC-MTX nanohybrids with high bioavailability is deserving of further study for the treatment of cancers.

KEY WORDS

magnesium aminoclay methotrexate drug delivery cancer therapy effect 

Notes

Funding Information

This work was supported by the Liaoning Provincial Natural Science Foundation of China (No. 201805500369).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Scheuermann GM, Thomann R, Mülhaupt R. Catalysts based upon organoclay with tunable polarity and dispersion behavior: new catalysts for hydrogenation, C-C coupling reactions and fluorous biphase catalysis. Catal Lett. 2009;132:355–62.CrossRefGoogle Scholar
  2. 2.
    Patil AJ, ML ED, Mann S. Novel bioinorganic nanostructures based on mesolamellar intercalation or single-molecule wrapping of DNA using organoclay building blocks. Nano Lett. 2007;7:2660–5.CrossRefGoogle Scholar
  3. 3.
    Hsu RS, Chang WH, Lin JJ. Nanohybrids of magnetic iron-oxide particles in hydrophobic organoclays for oil recovery. ACS Appl Mater Inter. 2010;2:1349–54.CrossRefGoogle Scholar
  4. 4.
    Tian DY, Wang WY, Li SP, Li XD, Sha ZL. A novel platform designed by Au core/inorganic shell structure conjugated onto MTX/LDH for chemo-photothermal therapy. Int J Pharm. 2016;505:96–106.CrossRefGoogle Scholar
  5. 5.
    Yang L, Choi SK, Shin HJ, Han HK. 3-aminopropyl functionalized magnesium phyllosilicate as an organoclay based drug carrier for improving the bioavailability of flurbiprofen. Int J Nanomedicine. 2013;8:4147–55.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wang S, Cao H, Zhong Y, Yang Y, Shao Z. A novel aminoclay–curcumin hybrid for enhanced chemotherapy. J Mater Chem B. 2016;4:4295–301.CrossRefGoogle Scholar
  7. 7.
    Johnsy G, Datta KK, Sajeevkumar VA, Sabapathy SN, Bawa AS, Eswaramoorthy M. Aminoclay: a designer filler for the synthesis of highly ductile polymer-nanocomposite film. ACS Appl Mater Inter. 2009;1:2796–803.CrossRefGoogle Scholar
  8. 8.
    Datta KK, Kulkarni C, Eswaramoorthy M. Aminoclay: a permselective matrix to stabilize copper nanoparticles. Chem Commun. 2010;46:616–8.CrossRefGoogle Scholar
  9. 9.
    Lee YC, Lee K, Hwang Y, Andersen HR, Kim B, Lee SY, et al. Aminoclay-templated nanoscale zero-valent iron (nZVI) synthesis for efficient harvesting of oleaginous microalga, Chlorella sp. KR-1. RSC Adv. 2014;4:4122–7.CrossRefGoogle Scholar
  10. 10.
    Yang JH, Lee JH, Ryu HJ, Elzatahry AA, Alothman ZA, Choy JH. Drug-clay nanohybrids as sustained delivery systems. Appl Clay Sci. 2016;130:20–32.CrossRefGoogle Scholar
  11. 11.
    Datta KKR, Eswaramoorthy M, Rao CNR. Water-solubilized aminoclay-metal nanoparticle composites and their novel properties. J Mater Chem. 2007;17:613–5.CrossRefGoogle Scholar
  12. 12.
    Ishijima Y, Okaniwa M, Oaki Y, Imai H. Two exfoliation approaches for organic layered compounds: hydrophilic and hydrophobic polydiacetylene nanosheets. Chem Sci. 2017;8:647–53.CrossRefGoogle Scholar
  13. 13.
    Lee YC, Jin E, Jung SW, Kim YM, Chang KS, Yang JW, et al. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci Rep. 2013;3:1292.CrossRefGoogle Scholar
  14. 14.
    Arvaniti OS, Hwang Y, Andersen HR, Stasinakis AS, Thomaidis NS, Aloupi M. Reductive degradation of perfluorinated compounds in water using mg-aminoclay coated nanoscale zero valent iron. Chem Eng J. 2015;262:133–9.CrossRefGoogle Scholar
  15. 15.
    Chakraborty A, Achari A, Eswaramoorthy M, Maji TK. MOF-aminoclay composites for superior CO2 capture, separation and enhanced catalytic activity in chemical fixation of CO2. Chem Commun. 2016;52:11378–81.CrossRefGoogle Scholar
  16. 16.
    Yang L, Lee Y-C, Kim MI, Park HG, Huh YS, Shao Y, et al. Biodistribution and clearance of aminoclay nanoparticles: implication for in vivo applicability as a tailor-made drug delivery carrier. J Mater Chem B. 2014;2:7567–74.CrossRefGoogle Scholar
  17. 17.
    George J, Kumar R, Sajeevkumar VA, Sabapathy SN, Siddaramaiah. Amine functionalised nanoclay incorporated hydroxypropyl methyl cellulose nanocomposites: synthesis and characterisation. Int J Plast Technol. 2014;18:252–62.CrossRefGoogle Scholar
  18. 18.
    Kharlampieva E, Kozlovskaya V, Richard Vaia DLK, Tsukruk VV, Wallet B, et al. Co-cross-linking silk matrices with silica nanostructures for robust ultrathin nanocomposites. ACS Nano. 2010;4:7053–63.CrossRefGoogle Scholar
  19. 19.
    Bertino JR. Cancer research: from folate antagonism to molecular targets. Best Pract Res Clin Haematol. 2009;22:577–82.CrossRefGoogle Scholar
  20. 20.
    Bessar H, Venditti I, Benassi L, Vaschieri C, Azzoni P, Pellacani G, et al. Functionalized gold nanoparticles for topical delivery of methotrexate for the possible treatment of psoriasis. Colloids Surf B Biointerfaces. 2016;141:141–7.CrossRefGoogle Scholar
  21. 21.
    Corem-Salkmon E, Ram Z, Daniels D, Perlstein B, Last D, Salomon S, et al. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles. Int J Nanomedicine. 2011;6:1595–602.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Dai CF, Wang WY, Wang L, Zhou L, Li SP, Li XD. Methotrexate intercalated calcium carbonate nanostructures: synthesis, phase transformation and bioassay study. Mater Sci Eng C Mater Biol Appl. 2016;69:577–83.CrossRefGoogle Scholar
  23. 23.
    Thushara KS, Gnanakumar ES, Mathew R, Jha RK, Ajithkumar TG, Rajamohanan PR, et al. Toward an understanding of the molecular level properties of Ziegler-Natta catalyst support with and without the internal electron donor. J Phys Chem C. 2011;115:1952–60.CrossRefGoogle Scholar
  24. 24.
    D’Anna V, Norsic S, Gajan D, Sanders K, Pell AJ, Lesage A, et al. Structural characterization of the EtOH-TiCl4-MgCl2Ziegler-Natta precatalyst. J Phys Chem C. 2016;120:18075–87.CrossRefGoogle Scholar
  25. 25.
    Patthamasang S, Jongsomjit B, Praserthdam P. Effect of EtOH/MgCl(2) molar ratios on the catalytic properties of MgCl(2)-SiO(2)/TiCl(4) Ziegler-Natta catalyst for ethylene polymerization. Molecules. 2011;16:8332–42.CrossRefGoogle Scholar
  26. 26.
    Lee Y-C, Choi Y-S, Choi M, Yang H, Liu K, Shin H-J. Dual-end functionalized magnesium organo-(phyllo)silicates via co-condensation and its antimicrobial activity. Appl Clay Sci. 2013;83-84:474–85.CrossRefGoogle Scholar
  27. 27.
    Achari A, Datta KK, De M, Dravid VP, Eswaramoorthy M. Amphiphilic aminoclay-RGO hybrids: a simple strategy to disperse a high concentration of RGO in water. Nanoscale. 2013;5:5316–20.CrossRefGoogle Scholar
  28. 28.
    Datta KKR, Achari A, Eswaramoorthy M. Aminoclay: a functional layered material with multifaceted applications. J Mater Chem A. 2013;1:6707.CrossRefGoogle Scholar
  29. 29.
    Chaturbedy P, Jagadeesan D, Eswaramoorthy M. pH-sensitive breathing of clay within the polyelectrolyte matrix. ACS Nano. 2010;4:5921–9.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Jinyu Li
    • 1
  • Sen Qiao
    • 1
  • Guoxin Tan
    • 1
  • Yibin Yu
    • 1
  • Dandan Liu
    • 2
  • Weisan Pan
    • 1
    Email author
  1. 1.Department of Pharmaceutics, School of PharmacyShenyang Pharmaceutical UniversityShenyangPeople’s Republic of China
  2. 2.School of Biomedical & Chemical EngineeringLiaoning Institute of Science and TechnologyBenxiPeople’s Republic of China

Personalised recommendations