AAPS PharmSciTech

, 20:316 | Cite as

A Lipid Micellar System Loaded with Dexamethasone Palmitate Alleviates Rheumatoid Arthritis

  • Xinxin Wang
  • Yan Feng
  • Jijun Fu
  • Cuishuan Wu
  • Bing He
  • Hua Zhang
  • Xueqing Wang
  • Wenbing Dai
  • Yong Sun
  • Qiang ZhangEmail author
Research Article


Glucocorticoids have been confirmed to be effective in the treatment of a variety of inflammatory diseases. However, their application encounters limitations in terms of tissue distribution and bioavailability in vivo. To address these key issues, we designed and developed a nanopreparation by using egg yolk lecithin/sodium glycocholate (EYL/SGC) and utilize such mixed micelles (MMs) to encapsulate dexamethasone palmitate (DMP) for the treatment of rheumatoid arthritis (RA). The prepared DMP-MMs had an average particle size of 49.18 ± 0.43 nm and were compared with an emulsion-based dexamethasone palmitate. Pharmacokinetic and in vivo fluorescence imaging showed that mixed micelles had higher bioavailability and targeting efficiency in inflammatory sites. An arthritis rat model was established via induction by Complete Freund’s Adjuvant (CFA), followed by the efficacy studies by the observations of paw volume, histology, spleen index, pro-inflammatory cytokines, and CT images. It was confirmed that intravenous injection of DMP-MMs exhibited advantages in alleviating joint inflammation compared with the emulsion system. Composed of pharmaceutical adjuvants only, the nanoscale mixed micelles seem a promising carrier system for the RA treatment with lipophilic drugs.


mixed micelles nanomedicine passive targeting dexamethasone palmitate rheumatoid arthritis 



We thank Beijing Delivery Pharmaceutical Technology Co., Ltd. for supporting Limethason® and NaOH. We would like to thank members of our laboratory for their help and support.


  1. 1.
    Smolen JS, Aletaha D, Mcinnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–38.CrossRefGoogle Scholar
  2. 2.
    Lee SM, Kim HJ, Ha YJ, Park YN, Lee SK, Park YB, et al. Targeted chemo-photothermal treatments of rheumatoid arthritis using gold half-shell multifunctional nanoparticles. ACS Nano. 2013;7(1):50–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Bathon JM, Moreland LW, Dibartolomeo AG. Inflammatory central nervous system involvement in rheumatoid arthritis. Semin Arthritis Rheum. 1989;18(4):258–66.PubMedCrossRefGoogle Scholar
  4. 4.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Hoes JN, Jacobs JWG, Buttgereit F, Bijlsma JWJ. Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat Rev Rheumatol. 2010;6(12):693–702.PubMedCrossRefGoogle Scholar
  6. 6.
    Singh JA, Saag KG, Bridges SL Jr, Akl EA, Bannuru RR, Sullivan MC. 2015 American College of Rheumatology Guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1–26.PubMedCrossRefGoogle Scholar
  7. 7.
    Yuan F, Quan LD, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64(12):1205–19.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Baschant U, Lane NE, Tuckermann J. The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat Rev Rheumatol. 2012;8(11):645–55.PubMedCrossRefGoogle Scholar
  9. 9.
    Bevaart L, Vervoordeldonk MJ, Tak PP. Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 2010;62(8):2192–205.PubMedCrossRefGoogle Scholar
  10. 10.
    Marco K, Christoph B. The current relevance and use of prednisone in rheumatoid arthritis. Expert Rev Clin Immunol. 2014;10(5):557–71.CrossRefGoogle Scholar
  11. 11.
    Matsumura YM, Maeda HA. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.PubMedGoogle Scholar
  12. 12.
    Jia M , Deng C , Luo J , Zhang P, Sun X,Zhang Z, Gong T. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. Int J Pharm 2018;540(1–2):57–64.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhenshan J, Xiaobei W, Xin W, Gang Z, Foster KW, Fang Q, et al. Micelle-forming dexamethasone prodrug attenuates nephritis in lupus-prone mice without apparent glucocorticoid side effects. ACS Nano. 2018;12(8):7663–81.CrossRefGoogle Scholar
  14. 14.
    Bahadori F, Topçu G, Eroğlu MS, Önyüksel H. A new lipid-based nano formulation of vinorelbine. AAPS PharmSciTech 2014;15:1138, 1148.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Durymanov M, Kamaletdinova T, Lehmann SE, Reineke J. Exploiting passive nanomedicine accumulation at sites of enhanced vascular permeability for non-cancerous applications. J Control Release. 2017;261:10–22.PubMedCrossRefGoogle Scholar
  16. 16.
    Yang M, Feng X, Ding J, Chang F, Chen X. Nanotherapeutics relieve rheumatoid arthritis. J Control Release. 2017;252:108–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Prasad LK, O'Mary H, Cui Z. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine. 2015;10(13):2063–74.PubMedCrossRefGoogle Scholar
  18. 18.
    Lingdong Q, Yijia Z, Bart J. Crielaard, Anand Dusad, Subodh M. Lele, Cristianne JF, Rijcken et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano 2014; 8(1):458–466.Google Scholar
  19. 19.
    Pradip N, Gajanand S, Bhupinder S, Khuller GK, Goni VG, Patil AB, et al. Preclinical explorative assessment of celecoxib-based biocompatible lipidic nanocarriers for the management of CFA-induced rheumatoid arthritis in Wistar rats. AAPS PharmSciTech. 2018;19(7):3187–98.CrossRefGoogle Scholar
  20. 20.
    Javed I, Hussain SZ, Ullah I, Khan I, Ateeq M, Shahnaz G, et al. Synthesis, characterization and evaluation of lecithin-based nanocarriers for the enhanced pharmacological and oral pharmacokinetic profile of amphotericin B. J Mater Chem B. 2015;3:8359–65.CrossRefGoogle Scholar
  21. 21.
    Javed I, Hussain SZ, Shahzad A, Khan JM, Habibur-Rehman MR, et al. Lecithin-gold hybrid nanocarriers as efficient and pH selective vehicles for oral delivery of diacerein—in-vitro and in-vivo study. Colloids Surf B: Biointerfaces. 2016;141:1–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Mitragotri S, Yoo JW. Designing micro- and nano-particles for treating rheumatoid arthritis. Arch Pharm Res. 2011;34(11):1887–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Dong F, Xie Y, Qi J, Hu F, Lu Y, Li S, et al. Bile salt/phospholipid mixed micelle precursor pellets prepared by fluid-bed coating. Int J Nanomedicine. 2013:1653–63.Google Scholar
  24. 24.
    Chopra P, Hao J, Li SK. Influence of drug lipophilicity on drug release from sclera after iontophoretic delivery of mixed micellar carrier system to human sclera. J Pharm Sci. 2013;102(2):480–8.PubMedCrossRefGoogle Scholar
  25. 25.
    Yokoyama K, Watanabe M. Limethason as a lipid microsphere preparation: an overview. Adv Drug Deliv Rev. 1996;20(2):195–201.CrossRefGoogle Scholar
  26. 26.
    Duan Y, Wang J, Yang X, Du H, Zhai G. Curcumin-loaded mixed micelles: preparation, optimization, physicochemical properties and cytotoxicity in vitro. Drug Deliv. 2014;22(1):50–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Seki J, Sonoke S, Saheki A, Fukui H, Sasaki H, Mayumi T. A nanometer lipid emulsion, lipid nano-sphere (LNS), as a parenteral drug carrier for passive drug targeting. Int J Pharm. 2004;273(1–2):75–83.PubMedCrossRefGoogle Scholar
  28. 28.
    Liu Z, Chen M, Guo Y, Wang X, Zhang L, Zhou J, et al. Self-assembly of cationic amphiphilic cellulose-g-poly (p-dioxanone) copolymers. Carbohydr Polym. 2019;204:214–22.PubMedCrossRefGoogle Scholar
  29. 29.
    Jiang Z, Zhao C, Gong X, Sun X, Li H, Zhao Y, et al. Quantification and efficient discovery of quality control markers for, Emilia prenanthoidea, DC. by fingerprint–efficacy relationship modelling. J Pharm Biomed Anal. 2018;156:36–44.PubMedCrossRefGoogle Scholar
  30. 30.
    Chen Y, Yu H, Guo F, Wu Y, Li Y. Antinociceptive and anti-inflammatory activities of a standardized extract of bis-iridoids from Pterocephalus hookeri. J Ethnopharmacol. 2018;216:233–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Muhammad M, Bakht N, Saniya ZS, Rashid KM, Bushra M, Ihsan-Ul H. Ipomoea batatas L. Lam. ameliorates acute and chronic inflammations by suppressing inflammatory mediators, a comprehensive exploration using in vitro and in vivo models. BMC Complementary and Altern Med. 2018;18(1):216.CrossRefGoogle Scholar
  32. 32.
    Boughton-Smith NK, Deakin AM, Follenfant RL, Whittle BJR, Garland LG. Role of oxygen radicals and arachidonic acid metabolites in the reverse passive Arthus reaction and carrageenin paw oedema in the rat. Br J Pharmacol. 1993;110(2):896–902.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Buritova J, Honoré P, Chapman V, Besson JM. Enhanced effects of co-administered dexamethasone and diclofenac on inflammatory pain processing and associated spinal c-Fos expression in the rat. Pain. 1996;64(3):559–68.PubMedCrossRefGoogle Scholar
  34. 34.
    Laste G, Ripoll Rozisky J, De Macedo IC, Vinicius SDS, de Souza C, Cristina I, et al. Spinal cord brain-derived neurotrophic factor levels increase after dexamethasone treatment in male rats with chronic inflammation. Neuroimmunomodulation. 2013;20(2):119–25.PubMedCrossRefGoogle Scholar
  35. 35.
    El-Rahman RSA, Suddek GM, Gameil NM, El-Kashef HA. Protective potential of MMR vaccine against complete Freund’s adjuvant-induced inflammation in rats. Inflammopharmacology. 2011;19(6):343–8.CrossRefGoogle Scholar
  36. 36.
    Khaled KA, Sarhan HA, Ibrahim MA, Ali AH, Naguib YW. Prednisolone-loaded PLGA microspheres. In vitro characterization and in vivo application in adjuvant-induced arthritis in mice. AAPS PharmSciTech. 2010;11(2):859–69.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Li XY, Li H, Zhang Y, Gao S, Dong CP, Wu GF. Development of albumin coupled, cholesterol stabilized, lipid nanoemulsion of methotrexate, and TNF-α inhibitor for improved in vivo efficacy against rheumatoid arthritis. AAPS PharmSciTech. 2017;18(7):2774–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Lianghui Y, Peng B, Dong C, Liuli X, Kam WL, Chenyong M. A KALA-modified lipid nanoparticle containing CpG-free plasmid DNA as a potential DNA vaccine carrier for antigen presentation and as an immune-stimulative adjuvant. Nucleic Acids Res. 2015;43(3):1317–31.CrossRefGoogle Scholar
  39. 39.
    Crielaard BJ, Lammers T, Schiffelers RM, Storm G. Drug targeting systems for inflammatory disease: one for all, all for one. J Control Release. 2012;161(2):225–34.PubMedCrossRefGoogle Scholar
  40. 40.
    Wei F, Xu S, Jia X, Sun X, Chang Y. BAFF and its receptors involved in the inflammation progress in adjuvant induced arthritis rats. Int Immunopharmacol. 2016;31:1–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Bernardi A, Zilberstein AE Jäg, Campos MM, Morrone FB, Calixto JB, et al. Effects of indomethacin-loaded nanocapsules in experimental models of inflammation in rats. Br J Pharmacol. 2009;158(4):1104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ben IO, Woode E, Koffuor GA, Boakyegyasi E, Titiloye NA. Effects of Trichilia monadelpha (Meliaceae) extracts on bone histomorphology in complete Freund’s adjuvant-induced arthritis. J Intercult Ethnopharmacol. 2017;6(2):177–85.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Dams ETM, Reijnen MMPJ, Oyen WJG, Boerman OC, Laverman P, Storm G, et al. Imaging experimental intraabdominal abscesses with 99mTc-PEG liposomes and 99mTc-HYNIC IgG. Ann Surg. 1999;229(4):551–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Laverman P, Dams ETM, Oyen WJG, Storm G, Koenders EB, Prevost R, et al. A novel method to label liposomes with Tc-99m by the hydrazino nicotinyl derivative. J Nucl Med. 1999;40(1):192–7.PubMedGoogle Scholar
  45. 45.
    Boerman O, Oyen W, Storm G, Corvo M, van Bloois L, van der Meer JWM, et al. Technetium-99m labeled liposomes to image experimental arthritis. Ann Rheum Dis. 1997;56(6):369–73.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Xinxin Wang
    • 1
  • Yan Feng
    • 2
  • Jijun Fu
    • 3
  • Cuishuan Wu
    • 4
  • Bing He
    • 2
  • Hua Zhang
    • 2
  • Xueqing Wang
    • 2
  • Wenbing Dai
    • 2
  • Yong Sun
    • 1
  • Qiang Zhang
    • 2
    Email author
  1. 1.Department of Pharmaceutics, School of PharmacyQingdao UniversityQingdaoChina
  2. 2.Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical SciencesPeking UniversityBeijingChina
  3. 3.School of Pharmaceutical ScienceGuangzhou Medical UniversityGuangzhouChina
  4. 4.Beijing Delivery Pharmaceutical Technology Co., LtdBeijingChina

Personalised recommendations