Advertisement

AAPS PharmSciTech

, 20:218 | Cite as

Enhancement of Oral Bioavailability and Anti-hyperuricemic Activity of Isoliquiritigenin via Self-Microemulsifying Drug Delivery System

  • Kangyi Zhang
  • Qilong Wang
  • Qiuxuan Yang
  • Qiuyu Wei
  • Na Man
  • Michael Adu-Frimpong
  • Elmurat Toreniyazov
  • Hao Ji
  • Jiangnan YuEmail author
  • Ximing XuEmail author
Research Article Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery
  • 18 Downloads
Part of the following topical collections:
  1. Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery

Abstract

The aim of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) for enhancement of the oral bioavailability of isoliquiritigenin (ISL) as well as evaluate its in vivo anti-hyperuricemic effect in rats. The ISL-loaded self-microemulsifying drug delivery system (ISL-SMEDDS) was comprised of ethyl oleate (EO, oil phase), Tween 80 (surfactant), and PEG 400 (co-surfactant). The ISL-SMEDDS exhibited an acceptable narrow size distribution (44.78 ± 0.35 nm), negative zeta potential (− 10.67 ± 0.86 mV), and high encapsulation efficiency (98.17 ± 0.24%). The in vitro release study indicated that the release rates of the formulation were obviously higher in different release media (HCl, pH 1.2; PBS, pH 6.8; double-distilled water, pH 7.0) compared with the ISL solution. The oral bioavailability of the ISL-SMEDDS was enhanced by 4.71 times in comparison with the free ISL solution. More importantly, ISL-SMEDDS significantly reduced uric acid level by inhibiting xanthine oxidase (XOD) activity in the model rats. Collectively, the prepared ISL-SMEDDS proved to be potential carriers for enhancing the solubility and oral bioavailability of ISL, as well as ameliorating its anti-hyperuricemic effect.

Key Words

Isoliquiritigenin ISL-SMEDDS bioavailability in vitro release anti-hyperuricemic 

Notes

Acknowledgments

The authors thank the Jiangsu University Ethics Committee for their kind guidance in the animal experiments.

Funding

This work was supported by the National Natural Science Foundation of China (81503025, 81473172, and 81773695), China Postdoctoral Science Foundation (2017M621658 and 2017M621659), and Special Funds for 331 and 333 projects (BRA2013198).

Compliance with Ethical Standards

The protocol for the experiment was in compliance with Jiangsu University’s Ethics Committee and guidelines spelt out for animal study by National Institute for Care and Use of Laboratory Animals (UJS-IACUC-2019032202).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cuendet M, Guo J, Luo Y, Chen S, Oteham CP, Moon RC, et al. Cancer chemopreventive activity and metabolism of isoliquiritigenin, a compound found in licorice. Cancer Prev Res. 2010;3:221–32.CrossRefGoogle Scholar
  2. 2.
    Yaling H, Chunchieh C, Chen PJ, Huang SE, Huang SC, Polin K. Shallot and licorice constituent isoliquiritigenin arrests cell cycle progression and induces apoptosis through the induction of ATM/p53 and initiation of the mitochondrial system in human cervical carcinoma HeLa cells. Mol Nutr Food Res. 2010;53:826–35.Google Scholar
  3. 3.
    Pan X, Kong LD, Zhang Y, Cheng CHK, Tan RX. In vitro inhibition of rat monoamine oxidase by liquiritigenin and isoliquiritigenin isolated from Sinofranchetia chinensis. Acta Pharmacol Sin. 2000;21:949–53.PubMedGoogle Scholar
  4. 4.
    Lee SH, Kim JY, Seo GS, Kim YC, Sohn DH. Isoliquiritigenin, from Dalbergia odorifera , up-regulates anti-inflammatory heme oxygenase-1 expression in RAW264.7 macrophages. Inflamm Res. 2009;58:257–62.CrossRefGoogle Scholar
  5. 5.
    Cao JH, Wang Y, Ji C, Ye JN. Determination of liquiritigenin and isoliquiritigenin in Glycyrrhiza uralensis and its medicinal preparations by capillary electrophoresis with electrochemical detection. J Chromatogr A. 2004;1042:203–9.CrossRefGoogle Scholar
  6. 6.
    Kundu P, Neese S, Bandara S, et al. The effects of the botantical estrogen, isoliquiritigenin on delayed spatial alternation. Neurotoxicol Teratol. 2018;66:55–62.CrossRefGoogle Scholar
  7. 7.
    Li, B.; Liu, B.; Li, J.; Xiao, H.; Wang, J.; Liang, G. Experimental and theoretical investigations on the supermolecular structure of isoliquiritigenin and 6-O-α-d-maltosyl-β-cyclodextrin inclusion complex. Int J Mol Sci. 2015;16:17999–18017.CrossRefGoogle Scholar
  8. 8.
    Zhang, D. H.; Lan-Lan, Y. E.; Cheng, H.; Wei, Y. U.; Yang, J. Cytoprotective effect and its mechanisms of isoliquiritigenin on acetaminophen induced acute injury of hepatocytes. CJCPT. 2008;13:293-298.Google Scholar
  9. 9.
    Radnaabazar C, Park CM, Kim JH, Cha J, Song YS. Fibrinolytic and antiplatelet aggregation properties of a recombinant Cheonggukjang kinase. J Med Food. 2011;14:625–9.CrossRefGoogle Scholar
  10. 10.
    Poullain C, Girard-Valenciennes E, Smadja J. Plants from Reunion Island: evaluation of their free radical scavenging and antioxidant activities. J Ethnopharmacol. 2004;95:19–26.CrossRefGoogle Scholar
  11. 11.
    Zhang XY, Qiao H, Ni JM, Shi YB, Qiang Y. Preparation of isoliquiritigenin-loaded nanostructured lipid carrier and the in vivo evaluation in tumor-bearing mice. Eur J Pharm Sci. 2013;49:411–22.CrossRefGoogle Scholar
  12. 12.
    Qiao H, Zhang X, Wang T, Liang L, Chang W, Xia H. Pharmacokinetics, biodistribution and bioavailability of isoliquiritigenin after intravenous and oral administration. Pharm Biol. 2014;52:228–36.CrossRefGoogle Scholar
  13. 13.
    Zhang, X.; Hua, Q.; Zhang, T.; Shi, Y.; Ni, J. Enhancement of gastrointestinal absorption of isoliquiritigenin by nanostructured lipid carrier. Adv Power Technol. 2014;25:1060–8.CrossRefGoogle Scholar
  14. 14.
    Zhou, J. X.; Lin, W. U.; Wang, J. G. Technology preparation of isoliquiritigenin microcapsule and their release in vitro. Mod Food Sci Tech. 2010;10:1132-5.Google Scholar
  15. 15.
    Lu, J. L.; Wanga, J. C.; Liu, X. Y., et al. Self-microemulsifying drug delivery system (SMEDDS) improves anticancer effect of oral 9-nitrocamptothecin on human cancer xenografts in nude mice. Eur J Pharm Biopharm. 2008;69:899–907.CrossRefGoogle Scholar
  16. 16.
    Chen, C.; Cai, D.; Qin, P.; Chen, B.; Wang, Z.; Tan, T. Bio-plasticizer production by hybrid acetone-butanol-ethanol fermentation with full cell catalysis of Candida sp. 99–125. Bioresour Technol. 2018; 257:217-22.Google Scholar
  17. 17.
    Al BGE. SMEDDS: a novel approach for lipophilic drugs. Int J Pharm Sci. 2012;3:2441-2450.Google Scholar
  18. 18.
    Zhang X, Qiao H, Zhang T, Shi Y, Ni J. Enhancement of gastrointestinal absorption of isoliquiritigenin by nanostructured lipid carrier. Adv Powder Technol. 2014;25:1060–8.CrossRefGoogle Scholar
  19. 19.
    W N, C. Lipids, lipophilic drugs, and oral drug delivery-some emerging concepts. J Pharm Sci. 2000;89:967–978.Google Scholar
  20. 20.
    Shakeel, F.; Alanazi, F. K.; Raish, M.; Haq, N.; Radwan, A. A.; Alsarra, I. A. Pharmacokinetic and in vitro cytotoxic evaluation of cholesterol-rich nanoemulsion of cholesteryl-succinyl-5-fluorouracil. Jour Mol Liq. 2015; 211:164–168.CrossRefGoogle Scholar
  21. 21.
    Mezghrani, O.; Ke, X.; Bourkaib, N.; Xu, B. H. Optimized self-microemulsifying drug delivery systems (SMEDDS) for enhanced oral bioavailability of astilbin. Pharmazie. 2011;66:754–60.Google Scholar
  22. 22.
    Zhang YR, He L, Yue SL, Huang QT, Zhang YH, Yang JY. Characterization and evaluation of a self-microemulsifying drug delivery system containing tectorigenin, an isoflavone with low aqueous solubility and poor permeability. Drug Delivery. 2017;24:632–40.CrossRefGoogle Scholar
  23. 23.
    Bedi N, Sharma K, Singh D. Tacrolimus loaded liquid and solid self-microemulsion preconcentrates: development and evaluation. Drug Delivery Letters. 2017;7:24–38.CrossRefGoogle Scholar
  24. 24.
    Ragab, G.; Elshahaly, M.; Bardin, T. Gout: an old disease in new perspective—a review. J Adv Res. 2017;8:495-511.CrossRefGoogle Scholar
  25. 25.
    Yi C, Zhong H, Tong S, Cao X, Firempong CK, Liu H, et al. Enhanced oral bioavailability of a sterol-loaded microemulsion formulation of Flammulina velutipes, a potential antitumor drug. Int J Nanomedicine. 2012;7:5067–78.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Yao, J.; Lu, Y.; Zhou, J. Preparation of nobiletin in self-microemulsifying systems and its intestinal permeability in rats. J Pharm Pharm Sci. 2008;11:22–29.CrossRefGoogle Scholar
  27. 27.
    Zhu J, Wang Q, Li H, Zhang H, Zhu Y, Omari-Siaw E, et al. Galangin-loaded, liver targeting liposomes: optimization and hepatoprotective efficacy. J Drug Deli Sci Tech. 2018;46:339–47.CrossRefGoogle Scholar
  28. 28.
    Xie, Y. J.; Wang, Q. L.; Adu-Frimpong, M., et al. Preparation and evaluation of isoliquiritigenin-loaded F127/P123 polymeric micelles. Drug Devel Ind Pharm. 2019;1:29.Google Scholar
  29. 29.
    Zhu Y, Peng W, Zhang J, Wang M, Firempong CK, Feng C, et al. Enhanced oral bioavailability of capsaicin in mixed polymeric micelles: preparation, in vitro and in vivo evaluation. J Funct Foods. 2014;8:358–66.CrossRefGoogle Scholar
  30. 30.
    Yang QX, Wang QL, Deng WW, et al. Anti-hyperuricemic and anti-gouty arthritis activities of polysaccharide purified from Lonicera japonica in model rats. Int J Biol Macromol. 2019;123:801–9.CrossRefGoogle Scholar
  31. 31.
    Qureshi MJ, Mallikarjun C, Kian WG. Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: a study in diet induced hyperlipidemic rabbits. Asi J Pharm Sci. 2015;10:40–56.CrossRefGoogle Scholar
  32. 32.
    Truong DH, Tran TH, Ramasamy T, Choi JY, Lee HH, Moon C, et al. Development of solid self-emulsifying formulation for improving the oral bioavailability of erlotinib. AAPS PharmSciTech. 2016;17:466–73.CrossRefGoogle Scholar
  33. 33.
    33. Gu Z, Shi X, Omari-Siaw E, Zhu Y, Li H, Guo M, et al. Self-microemulsifying sustained-release pellet of Ginkgo biloba extract: preparation, invitro drug release and pharmacokinetics study in beagle dogs. J Drug Deli Sci Tech. 2017;37:184–93.CrossRefGoogle Scholar
  34. 34.
    Dixit AR, Rajput SJ, Patel SG. Preparation and bioavailability assessment of SMEDDS containing valsartan. AAPS PharmSciTech. 2010;11:314–21.CrossRefGoogle Scholar
  35. 35.
    Zhu Y, Zhang J, Zheng Q, Wang M, Deng W, Li Q, et al. In vitro and in vivo evaluation of capsaicin-loaded microemulsion for enhanced oral bioavailability. J Sci Food Agri. 2015;95:2678–85.CrossRefGoogle Scholar
  36. 36.
    Wang Q, Wei Q, Yang Q, Cao X, Li Q, Shi F, et al. A novel formulation of [6]-gingerol: proliposomes with enhanced oral bioavailability and antitumor effect. Int J Pharm. 2018;535:308–15.CrossRefGoogle Scholar
  37. 37.
    Shi F, Wei Z, Zhao Y, Xu X. Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag. 2016;12:198.CrossRefGoogle Scholar
  38. 38.
    Balata, G. F.; Essa, E. A.; Shamardl, H. A.; Zaidan, S. H.; Abourehab, M. A. Therapy self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des Devel Ther. 2016; 10:117–28.Google Scholar
  39. 39.
    Bajaj, A.; Rao, M. R.; Khole, I.; Munjapara, G. Self-nanoemulsifying drug delivery system of cefpodoxime proxetil containing tocopherol polyethylene glycol succinate. Drug Dev Ind Pharm. 2013;39:635–45.CrossRefGoogle Scholar
  40. 40.
    Bachhav, Y. G.; Patravale, V. B. SMEDDS of glyburide: formulation, in vitro evaluation, and stability studies. AAPS PharmSciTech. 2009;10:482-7.CrossRefGoogle Scholar
  41. 41.
    Parmar, N. Study of cosurfactant effect on nanoemulsifying area and development of lercanidipine loaded (SNEDDS) self nanoemulsifying drug delivery system. Colloids Surf B Biointerfaces. 2011;86:327–338.CrossRefGoogle Scholar
  42. 42.
    Qureshi, M. J.; Mallikarjun, C.; Kian, W. G. Enhancement of solubility and therapeutic potential of poorly soluble lovastatin by SMEDDS formulation adsorbed on directly compressed spray dried magnesium aluminometasilicate liquid loadable tablets: a study in diet induced hyperlipidemic rabbits. Asia J Pharm Sci. 2015;10:40–56.CrossRefGoogle Scholar
  43. 43.
    Zhu Y, Wang M, Zhang J, Peng W, Firempong CK, Deng W, et al. Improved oral bioavailability of capsaicin via liposomal nanoformulation: preparation, in vitro drug release and pharmacokinetics in rats. Arch Pharm Res. 2015;38:512–21.CrossRefGoogle Scholar
  44. 44.
    Xia WJ, Onyuksel H. Mechanistic studies on surfactant-induced membrane permeability enhancement. Pharm Res. 2000;17:612–8.CrossRefGoogle Scholar
  45. 45.
    Gupta, S.; Kesarla, R.; Omri, A. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems. ISRN Pharm. 2013;2013:848043.CrossRefGoogle Scholar
  46. 46.
    Parul, J.; Geeta, A.; Sasidharan Leelakumari, H.; Kashmir, S. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. Int J Pharm Investig. 2014;4:195–206.Google Scholar
  47. 47.
    Shi F, Zhao Y, Firempong CK, Xu X. Preparation, characterization and pharmacokinetic studies of linalool-loaded nanostructured lipid carriers. Pharm Biol. 2016;54:2320–8.CrossRefGoogle Scholar
  48. 48.
    Wang Y, Wang S, Firempong CK, et al. Enhanced solubility and bioavailability of naringenin via liposomal nanoformulation: preparation and in vitro and in vivo evaluations. AAPS PharmSciTech. 2016;18:1–9.Google Scholar
  49. 49.
    Kumar P, Das A, Savant SS, Mandal RK, Hassan S. Gout nodulosis: report of a rare case and brief review. Dermatol Online J. 2015;21:8.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Kangyi Zhang
    • 1
  • Qilong Wang
    • 1
  • Qiuxuan Yang
    • 1
  • Qiuyu Wei
    • 1
  • Na Man
    • 1
  • Michael Adu-Frimpong
    • 1
  • Elmurat Toreniyazov
    • 2
    • 3
  • Hao Ji
    • 2
    • 4
  • Jiangnan Yu
    • 1
    • 2
    • 5
    Email author
  • Ximing Xu
    • 1
    • 2
    • 5
    Email author
  1. 1.Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.Jiangsu Provincial Research Center for Medicinal Function Development of New Food ResourcesZhenjiangPeople’s Republic of China
  3. 3.Tashkent State Agricultural University (Nukus Branch)NukusUzbekistan
  4. 4.Jiangsu Tian Sheng Pharmaceutical Co., LtdZhenjiangPeople’s Republic of China
  5. 5.Key Laboratory of Drug Delivery & Tissue RegenerationZhenjiangPeople’s Republic of China

Personalised recommendations