Advertisement

AAPS PharmSciTech

, 20:164 | Cite as

In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: a Comprehensive Review

  • Ravi Sheshala
  • Nor Khaizan Anuar
  • Nor Hayati Abu Samah
  • Tin Wui WongEmail author
Review Article Theme: Advancements in Dissolution Testing of Oral and Non-Oral Formulations
  • 8 Downloads
Part of the following topical collections:
  1. Theme: Advancements in Dissolution Testing of Oral and Non-Oral Formulations

Abstract

This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration–time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.

KEY WORDS

in vitro dissolution in vitro permeation nanocarrier skin topical transdermal 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Hamblin M, Avci P, Prow T. Nanoscience in dermatology. 1st ed. Cambridge: Academic; 2016.Google Scholar
  2. 2.
    Abla MJ, Singh ND, Banga AK. Role of nanotechnology in skin delivery of drugs. In: Dragicevic N, Maibach H, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement: nanocarriers. Berlin: Springer; 2016. p. 1–10.Google Scholar
  3. 3.
    Caster JM, Patel AN, Zhang T, Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Interdiscip Rev Nanomed Nanobiotechnol. 2017;9(1):e1416.  https://doi.org/10.1002/wnan.1416.CrossRefGoogle Scholar
  4. 4.
    Williams AC. Transdermal and topical drug delivery. From theory to clinical practice. London: Pharmaceutical Press; 2003.Google Scholar
  5. 5.
    Ye C, Qiu H, Seixas MDG, Bazin R, Flament F, Cointereau-Chardon S, et al. Facial skin pores: a multiethnic study. Clin Cosmet Investig Dermatol. 2015;8:85.  https://doi.org/10.2147/ccid.s74401.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Otberg N, Richter H, Schaefer H, Blume-Peytavi U, Sterry W, Lademann J. Variations of hair follicle size and distribution in different body sites. J Invest Dermatol. 2004;122(1):14–9.  https://doi.org/10.1046/j.0022-202X.2003.22110.x.CrossRefPubMedGoogle Scholar
  7. 7.
    Luengo J, Lehr C-M, Otberg N, Teichmann A, Blume-Peytavi U, Richter H, et al. Nanoparticles—an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2006;66(2):159–64.  https://doi.org/10.1016/j.ejpb.2006.10.019.CrossRefPubMedGoogle Scholar
  8. 8.
    Patzelt A, Mak WC, Jung S, Knorr F, Meinke MC, Richter H, et al. Do nanoparticles have a future in dermal drug delivery? J Control Release. 2017;246:174–82.  https://doi.org/10.1016/j.jconrel.2016.09.015.CrossRefPubMedGoogle Scholar
  9. 9.
    Nastiti CMRR, Ponto T, Abd E, Grice JE, Benson HAE, Roberts MS. Topical nano and microemulsions for skin delivery. Pharmaceutics. 2017;9(4):37.  https://doi.org/10.3390/pharmaceutics9040037.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Delouise LA. Applications of nanotechnology in dermatology. J Invest Dermatol. 2012;132(3 PART 2):964–75.  https://doi.org/10.1038/jid.2011.425.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ng K, Lau W. Skin deep: the basics of human skin structure and drug penetration. In: Dragicevic N, Maibach H, editors. Percutaneous penetration enhancers chemical methods in penetration enhancement: drug manipulation strategies and vehicle effects. Berlin: Springer; 2015. p. 3–10.  https://doi.org/10.1007/978-3-662-45013-0.CrossRefGoogle Scholar
  12. 12.
    Baroli B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J Pharm Sci. 2010;99(1):21–50.  https://doi.org/10.1002/jps.21817.CrossRefPubMedGoogle Scholar
  13. 13.
    Grice JE, Moghimi HR, Ryan E, Zhang Q, Haridass I, Mohammed Y, et al. Non-formulation parameters that affect penetrant-skin-vehicle interactions and percutaneous absorption. In: Dragicevic N, Maibach H, editors. Percutaneous penetration enhancers drug penetration into/through the skin: methodology and general considerations. Berlin: Springer; 2017. p. 45–75.  https://doi.org/10.1007/978-3-662-53270-6.CrossRefGoogle Scholar
  14. 14.
    Surber C, Humbert P, Abels C, Maibach H. The acid mantle: a myth or an essential part of skin health? Curr Probl Dermatol. 2018;54:1–10.  https://doi.org/10.1159/000489512.CrossRefPubMedGoogle Scholar
  15. 15.
    Elias PM. Stratum corneum defensive functions: an integrated view. J Invest Dermatol. 2005;125(2):183–200.  https://doi.org/10.1111/j.0022-202X.2005.23668.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19(6):296–302.  https://doi.org/10.1159/000094670.CrossRefPubMedGoogle Scholar
  17. 17.
    Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.  https://doi.org/10.1038/nrmicro2537.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    US Food and Drug Administration. Guidance for industry considering whether an FDA-regulated product involves the application of nanotechnology. 2014.Google Scholar
  19. 19.
    Rivera Gil P, Hühn D, del Mercato LL, Sasse D, Parak WJ. Nanopharmacy: inorganic nanoscale devices as vectors and active compounds. Pharmacol Res. 2010;62(2):115–25.  https://doi.org/10.1016/j.phrs.2010.01.009.CrossRefPubMedGoogle Scholar
  20. 20.
    Harjoh N, Wong T, Nawaz A, Khan N, Harun M. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery. Curr Pharm Des. 2015;21(20):2848–66.  https://doi.org/10.2174/1381612821666150428145216.CrossRefPubMedGoogle Scholar
  21. 21.
    Chityal G, Poornachandra Y, Pombala S. Therapeutic nanomaterials: from a drug delivery perspective. In: Andronescu E, Grumezescu A, editors. Nanostructures for drug delivery. Amasterdam: Elsevier; 2017. p. 1–61.Google Scholar
  22. 22.
    Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366(1–2):170–84.  https://doi.org/10.1016/j.ijpharm.2008.10.003.CrossRefPubMedGoogle Scholar
  23. 23.
    Contri R, Fiel L, Pohlmann A, Guterres S, Beck R. Transport of substances and nanoparticles across the skin and in vitro models to evaluate skin permeation and/or penetration. In: Beck R, Guterres S, Pohlmann A, editors. Nanocosmetics and nanomedicines. Berlin: Springer; 2011. p. 3–36.  https://doi.org/10.1007/978-3-642-19792-5.CrossRefGoogle Scholar
  24. 24.
    Neubert RHH. Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur J Pharm Biopharm. 2011;77(1):1–2.  https://doi.org/10.1016/j.ejpb.2010.11.003.CrossRefPubMedGoogle Scholar
  25. 25.
    Palmer BC, DeLouise LA. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules. 2016;21(12):1719.  https://doi.org/10.3390/molecules21121719.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Vogt A, Lendlein A, Alexiev U, Neffe AT, Wischke C, Ma N. Nanocarriers for drug delivery into and through the skin—do existing technologies match clinical challenges? J Control Release. 2016;242:3–15.  https://doi.org/10.1016/j.jconrel.2016.07.027.CrossRefPubMedGoogle Scholar
  27. 27.
    Bibi N, Ahmed N, Khan G. Nanostructures in transdermal drug delivery systems. In: Andronescu E, Grumezescu A, editors. Nanostructures for drug delivery. Amsterdam: Elsevier; 2017. p. 639–68.CrossRefGoogle Scholar
  28. 28.
    Bhatia S. Natural polymer drug delivery systems: nanoparticles, plants, and algae. Cham: Springer International Publishing; 2016.CrossRefGoogle Scholar
  29. 29.
    Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.  https://doi.org/10.1038/nmat3776.CrossRefPubMedGoogle Scholar
  30. 30.
    D’Mello SR, Chen M-L, Lee SL, Cruz CN, Tyner KM, Kapoor M. The evolving landscape of drug products containing nanomaterials in the United States. Nat Nanotechnol. 2017;12(6):523–9.  https://doi.org/10.1038/nnano.2017.67.CrossRefPubMedGoogle Scholar
  31. 31.
    Abu Samah N, Heard C. The effects of topically applied polyNIPAM-based nanogels and their monomers on skin cyclooxygenase expression, ex vivo. Nanotoxicology. 2014;8(1):100–6.  https://doi.org/10.3109/17435390.2012.754511.CrossRefPubMedGoogle Scholar
  32. 32.
    Selzer D, Schaefer UF, Lehr CM, Hansen S. Basic mathematics in skin absorption. In: Dragicevic N, Maibach H, editors. Percutaneous penetration enhancers drug penetration into/through the skin: methodology and general considerations. Berlin: Springer; 2017. p. 3–25.  https://doi.org/10.1007/978-3-662-53270-6_1.CrossRefGoogle Scholar
  33. 33.
    Shah V, Skelly J. In vitro methodology: practical considerations in developing a quality control (in vitro release) procedure for topical drug products. In: Shah V, Maibach H, editors. Topical drug bioavailability, bioequivalence, and penetration. Boston: Springer; 1993. p. 107–16.  https://doi.org/10.1007/978-1-4899-1262-6.CrossRefGoogle Scholar
  34. 34.
    Dizaj S, Vazifehasl Z, Salatin S, Adibkia K, Javadzadeh Y. Nanosizing of drugs: effect on dissolution rate. Research in pharmaceutical sciences. Res Pharm Sci. 2015 [2019 Feb 28];10(2):95–108.Google Scholar
  35. 35.
    US Food and Drug Administration. Guidance for industry: drug products, including biological products, that contain nanomaterials. 2017.Google Scholar
  36. 36.
    Scheubel E. Predictive in vitro dissolution tools: application during formulation development. Clermont-Ferrand: Université d’Auvergne Clermont-Ferrand I; 2010.Google Scholar
  37. 37.
    Marques M, Ueda CT, Shah VP, Derdzinski K, Ewing G, Flynn G, et al. Topical and transdermal drug products. Pharmacopeial Forum. 2009;35(3):750–64.Google Scholar
  38. 38.
    Brown CK, Friedel HD, Barker AR, Buhse LF, Keitel S, Cecil TL, et al. FIP/AAPS joint workshop report: dissolution/in vitro release testing of novel/special dosage forms. Dissolut Technol. 2011;18(4):51–64.  https://doi.org/10.1208/s12249-011-9634-x.CrossRefGoogle Scholar
  39. 39.
    Chang R-K, Raw A, Lionberger R, Yu L. Generic development of topical dermatologic products: formulation development, process development, and testing of topical dermatologic products. AAPS J. 2013;15(1):41–52.  https://doi.org/10.1208/s12248-012-9411-0.CrossRefPubMedGoogle Scholar
  40. 40.
    Mansour H, Park C-W. Therapeutic applications and targeted delivery of nanomedicines and nanopharmaceutical products. In: Brenner S, editor. The clinical nanomedicine handbook. Boca Raton: CRC; 2013. p. 321–34.CrossRefGoogle Scholar
  41. 41.
    Tinkle S, Mcneil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC, et al. Nanomedicines: addressing the scientific and regulatory gap. Ann N Y Acad Sci. 2014;1313(1):35–56.  https://doi.org/10.1111/nyas.12403.CrossRefPubMedGoogle Scholar
  42. 42.
    Weissig V, Pettinger T, Murdock N. Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine. 2014;9(1):4357–73.  https://doi.org/10.2147/IJN.S46900.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tadicherla S, Berman B. Percutaneous dermal drug delivery for local pain control. Ther Clin Risk Manag. 2006;2(1):99–113.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Praca F, Campos P, Eloy J, Petrilli R, Bentley M, Medina W. Topical photodynamic therapy for skin diseases: current status of preclinical and clinical research, nanocarriers and physical methods for photosensitizer delivery. In: Ascenso A, Simões S, Ribeiro H, editors. Carrier-mediated dermal delivery: applications in the prevention and treatment of skin disorders. Singapore: Pan Stanford; 2017.Google Scholar
  45. 45.
    Siewert M, Dressman J, Brown CK, Shah VP, Aiache J-M, Aoyagi N, et al. FIP/AAPS guidelines to dissolution/in vitro release testing of novel/special dosage forms. AAPS PharmSciTech. 2003;4(1):43–52.  https://doi.org/10.1208/pt040107.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Copley T. Performance testing for topical and transdermal drug delivery. Am Pharm Rev. 2016:1–7.Google Scholar
  47. 47.
    D’Souza S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharm. 2014;2014:1–12.  https://doi.org/10.1155/2014/304757.CrossRefGoogle Scholar
  48. 48.
    Shen J, Burgess DJ. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: recent developments and challenges. Drug Deliv Transl Res. 2013;3(5):409–15.  https://doi.org/10.1007/s13346-013-0129-z.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sabitha M, Sanoj R, Nair A, Lakshmanan V-K, Nair SV, Jayakumar R. Development and evaluation of 5-fluorouracil loaded chitin nanogels for treatment of skin cancer. Carbohydr Polym. 2013;91(1):48–57.  https://doi.org/10.1016/J.CARBPOL.2012.07.060.CrossRefPubMedGoogle Scholar
  50. 50.
    Khalil SKH, El-Feky GS, El-Banna ST, Khalil WA. Preparation and evaluation of warfarin-β-cyclodextrin loaded chitosan nanoparticles for transdermal delivery. Carbohydr Polym. 2012;90(3):1244–53.  https://doi.org/10.1016/j.carbpol.2012.06.056.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu Y, Nguyen A, Allen A, Zoldan J, Huang Y, Chen JY. Regenerated cellulose micro-nano fiber matrices for transdermal drug release. Mater Sci Eng C. 2017;74:485–92.  https://doi.org/10.1016/J.MSEC.2016.12.048.CrossRefGoogle Scholar
  52. 52.
    Elmowafy M, Samy A, Abdelaziz AE, Shalaby K, Abdelgawad MA, Raslan MA, et al. Polymeric nanoparticles based topical gel of poorly soluble drug: formulation, ex-vivo and in vivo evaluation. Beni-Suef Univ J Basic Appl Sci. 2017;6(2):184–91.  https://doi.org/10.1016/j.bjbas.2017.03.004.CrossRefGoogle Scholar
  53. 53.
    Jug M, Hafner A, Lovrić J, Kregar ML, Pepić I, Vanić Ž, et al. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems. J Pharm Biomed Anal. 2018;147:350–66.  https://doi.org/10.1016/j.jpba.2017.06.072.CrossRefPubMedGoogle Scholar
  54. 54.
    Kelidari HR, Saeedi M, Akbari J, Morteza-Semnani K, Gill P, Valizadeh H, et al. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces. 2015;128:473–9.  https://doi.org/10.1016/j.colsurfb.2015.02.046.CrossRefPubMedGoogle Scholar
  55. 55.
    Moazeni M, Kelidari HR, Saeedi M, Morteza-Semnani K, Nabili M, Gohar AA, et al. Time to overcome fluconazole resistant Candida isolates: solid lipid nanoparticles as a novel antifungal drug delivery system. Colloids Surf B Biointerfaces. 2016;142:400–7.  https://doi.org/10.1016/j.colsurfb.2016.03.013.CrossRefPubMedGoogle Scholar
  56. 56.
    Somagoni J, Patel AR, Boakye CHA, Singh M, Zucolotto V, Mendonca Faria HA, et al. Nanomiemgel—a novel drug delivery system for topical application—in vitro and in vivo evaluation. PLoS One. 2014;9(12):e115952.  https://doi.org/10.1371/journal.pone.0115952.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gupta S, Jayakumar R, Panonnummal R, Sabitha M, Divya G. Acitretin and aloe-emodin loaded chitin nanogel for the treatment of psoriasis. Eur J Pharm Biopharm. 2016;107:97–109.  https://doi.org/10.1016/j.ejpb.2016.06.019.CrossRefPubMedGoogle Scholar
  58. 58.
    Panonnummal R, Jayakumar R, Sabitha M. Comparative anti-psoriatic efficacy studies of clobetasol loaded chitin nanogel and marketed cream. Eur J Pharm Sci. 2017;96:193–206.  https://doi.org/10.1016/j.ejps.2016.09.007.CrossRefPubMedGoogle Scholar
  59. 59.
    Kaur A, Katiyar SS, Kushwah V, Jain S. Nanoemulsion loaded gel for topical co-delivery of clobitasol propionate and calcipotriol in psoriasis. Nanomedicine. 2017;13(4):1473–82.  https://doi.org/10.1016/j.nano.2017.02.009.CrossRefPubMedGoogle Scholar
  60. 60.
    Hua S. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomedicine. 2014;9(1):735–44.  https://doi.org/10.2147/IJN.S55805.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Noshi SH. Lipid-based drug delivery systems for the enhancement of topical delivery of benzocaine. J Pharm Biol Sci. 2018;13(3):13–9.  https://doi.org/10.9790/3008-1303011319.CrossRefGoogle Scholar
  62. 62.
    Hussain A, Samad A, Nazish I, Ahmed FJ. Nanocarrier-based topical drug delivery for an antifungal drug. Drug Dev Ind Pharm. 2014;40(4):527–41.  https://doi.org/10.3109/03639045.2013.771647.CrossRefPubMedGoogle Scholar
  63. 63.
    Sanap GS, Mohanta GP. Development of miconazole nitrate controlled release formulations based on SLN and NLC for topical delivery. Int J Pharm Pharm Sci. 2014;6(4):393–9.Google Scholar
  64. 64.
    Yang M, Gu Y, Yang D, Tang X, Liu J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J Nanobiotechnology. 2017;15(1):88.  https://doi.org/10.1186/s12951-017-0323-0.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Deva P. Nanoparticulate drug delivery systems, in vitro drug release test methods. Int J Pharma Bio Sci. 2017;8(3):103–19.  https://doi.org/10.22376/ijpbs.2017.8.3.p103-119.CrossRefGoogle Scholar
  66. 66.
    Jana S, Manna S, Nayak AK, Sen KK, Basu SK. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces. 2014;114:36–44.  https://doi.org/10.1016/j.colsurfb.2013.09.045.CrossRefPubMedGoogle Scholar
  67. 67.
    Chen H, Wang Y, Zhai Y, Zhai G, Wang Z, Liu J. Development of a ropivacaine-loaded nanostructured lipid carrier formulation for transdermal delivery. Colloids Surf A Physicochem Eng Asp. 2015;465(465):130–6.  https://doi.org/10.1016/j.colsurfa.2014.10.046.CrossRefGoogle Scholar
  68. 68.
    Song J, Fan X, Shen Q. Daidzein-loaded nanostructured lipid carriers-PLGA nanofibers for transdermal delivery. Int J Pharm. 2016;501(1–2):245–52.  https://doi.org/10.1016/j.ijpharm.2016.02.003.CrossRefPubMedGoogle Scholar
  69. 69.
    Elgindy NA, Mehanna MM, Mohyeldin SM. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int J Pharm. 2016;501(1–2):167–79.  https://doi.org/10.1016/j.ijpharm.2016.01.049.CrossRefPubMedGoogle Scholar
  70. 70.
    Dias SFL, Nogueira SS, De França DF, Guimarães MA, De Oliveira Pitombeira NA, Gobbo GG, et al. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr Polym. 2016;143:254–61.  https://doi.org/10.1016/j.carbpol.2016.02.004.CrossRefPubMedGoogle Scholar
  71. 71.
    Ahmad A, Abuzinadah MF, Alkreathy HM, Banaganapalli B, Mujeeb M. Ursolic acid rich Ocimum sanctum L leaf extract loaded nanostructured lipid carriers ameliorate adjuvant induced arthritis in rats by inhibition of COX-1, COX-2, TNF-α and IL-1: pharmacological and docking studies. Davis KR, editor. PLoS One. 2018;13(3):e0193451.  https://doi.org/10.1371/journal.pone.0193451.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Singh I, Saraf SA, Singh S, Saha S, Parashar P, Kanoujia J. Transdermal potential and anti-gout efficacy of febuxostat from niosomal gel. J Drug Deliv Sci Technol. 2017;39:348–61.  https://doi.org/10.1016/j.jddst.2017.04.020.CrossRefGoogle Scholar
  73. 73.
    Mohseni M, Ilka R, Mehravi B, Ashtari K, Abnoos M, Mousavi SAJ. Chitosan-alginate nano-carrier for transdermal delivery of pirfenidone in idiopathic pulmonary fibrosis. Int J Biol Macromol. 2018;118:1319–25.  https://doi.org/10.1016/j.ijbiomac.2018.04.147.CrossRefPubMedGoogle Scholar
  74. 74.
    Garg NK, Sharma G, Singh B, Nirbhavane P, Tyagi RK, Shukla R, et al. Quality by design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory disorder(s). Int J Pharm. 2017;517(1–2):413–31.  https://doi.org/10.1016/j.ijpharm.2016.12.010.CrossRefPubMedGoogle Scholar
  75. 75.
    Elmataeeshy ME, Sokar MS, Bahey-El-Din M, Shaker DS. Enhanced transdermal permeability of terbinafine through novel nanoemulgel formulation; development, in vitro and in vivo characterization. Future J Pharm Sci. 2018;4(1):18–28.  https://doi.org/10.1016/j.fjps.2017.07.003.CrossRefGoogle Scholar
  76. 76.
    Vaghasiya H, Kumar A, Sawant K. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur J Pharm Sci. 2013;49(2):311–22.  https://doi.org/10.1016/j.ejps.2013.03.013.CrossRefPubMedGoogle Scholar
  77. 77.
    Domínguez-Villegas V, Clares-Naveros B, García-López ML, Calpena-Campmany AC, Bustos-Zagal P, Garduño-Ramírez ML. Development and characterization of two nano-structured systems for topical application of flavanones isolated from Eysenhardtia platycarpa. Colloids Surf B Biointerfaces. 2014;116:183–92.  https://doi.org/10.1016/j.colsurfb.2013.12.009.CrossRefPubMedGoogle Scholar
  78. 78.
    Pople P, Singh K. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech. 2006;7(4):91–E69.  https://doi.org/10.1208/pt070491.CrossRefPubMedGoogle Scholar
  79. 79.
    Ng SF, Rouse J, Sanderson D, Eccleston G. A comparative study of transmembrane diffusion and permeation of ibuprofen across synthetic membranes using Franz diffusion cells. Pharmaceutics. 2010;2(2):209–23.  https://doi.org/10.3390/pharmaceutics2020209.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Singh S, Singh M, Tripathi CB, Arya M, Saraf SA. Development and evaluation of ultra-small nanostructured lipid carriers: novel topical delivery system for athlete’s foot. Drug Deliv Transl Res. 2016;6(1):38–47.  https://doi.org/10.1007/s13346-015-0263-x.CrossRefPubMedGoogle Scholar
  81. 81.
    Teledyne Hanson Research. Vertical diffusion cell 6-cell manual diffusion test system. https://hansonresearch.com/diffusion-testing/manual-diffusion/. Accessed 14 Aug 2018.
  82. 82.
    de Lino MES, ALM R, Perissinato AG, Pereira GR, Mudrik PS. Evaluation of skin absorption of drugs from topical and transdermal formulations. Braz J Pharm Sci. 2016;52(3):527–44.  https://doi.org/10.1590/s1984-82502016000300018.CrossRefGoogle Scholar
  83. 83.
    Murthy SN, Hiremath SRR. Physical and chemical permeation enhancers in transdermal delivery of terbutaline sulphate. AAPS PharmSciTech. 2004;2(1):1–5.  https://doi.org/10.1208/pt0201_tn1.CrossRefGoogle Scholar
  84. 84.
    Fang JY, Fang CL, Liu CH, Su YH. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–40.  https://doi.org/10.1016/j.ejpb.2008.05.008.CrossRefPubMedGoogle Scholar
  85. 85.
    Calpena AC, Souto EB, Garduño-Ramirez ML, García ML, Clares B, Abrego G, et al. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: in vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces. 2015;130:40–7.  https://doi.org/10.1016/j.colsurfb.2015.03.062.CrossRefPubMedGoogle Scholar
  86. 86.
    Nawaz A, Wong TW. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate particles: microwave modulated uptake by skin and melanoma cells. J Invest Dermatol. 2018;138(11):2412–22.  https://doi.org/10.1016/j.jid.2018.04.037.CrossRefPubMedGoogle Scholar
  87. 87.
    Khan NR, Wong TW. Microwave-aided skin drug penetration and retention of 5-fluorouracil-loaded ethosomes. Expert Opin Drug Deliv. 2016;13(9):1209–19.  https://doi.org/10.1080/17425247.2016.1193152.CrossRefPubMedGoogle Scholar
  88. 88.
    Khan NR, Wong TW. 5-Fluorouracil ethosomes—skin deposition and melanoma permeation synergism with microwave. Artif Cells Nanomed Biotechnol. 2018;46(sup1):568–77.  https://doi.org/10.1080/21691401.2018.1431650.CrossRefGoogle Scholar
  89. 89.
    Limón D, Amirthalingam E, Rodrigues M, Halbaut L, Andrade B, Garduño-Ramírez ML, et al. Novel nanostructured supramolecular hydrogels for the topical delivery of anionic drugs. Eur J Pharm Biopharm. 2015;96:421–36.  https://doi.org/10.1016/j.ejpb.2015.09.007.CrossRefPubMedGoogle Scholar
  90. 90.
    Al-Kassas R, Wen J, Cheng AEM, Kim AMJ, Liu SSM, Yu J. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel. Carbohydr Polym. 2016;153:176–86.  https://doi.org/10.1016/j.carbpol.2016.06.096.CrossRefPubMedGoogle Scholar
  91. 91.
    Nawaz A, Wong TW. Microwave as skin permeation enhancer for transdermal drug delivery of chitosan-5-fluorouracil nanoparticles. Carbohydr Polym. 2017;157:906–19.  https://doi.org/10.1016/j.carbpol.2016.09.080.CrossRefPubMedGoogle Scholar
  92. 92.
    Ahmed TA, El-Say KM. Development of alginate-reinforced chitosan nanoparticles utilizing W/O nanoemulsification/internal crosslinking technique for transdermal delivery of rabeprazole. Life Sci. 2014;110(1):35–43.  https://doi.org/10.1016/j.lfs.2014.06.019.CrossRefPubMedGoogle Scholar
  93. 93.
    Vijayan V, Reddy KR, Sakthivel S, Swetha C. Optimization and charaterization of repaglinide biodegradable polymeric nanoparticle loaded transdermal patchs: in vitro and in vivo studies. Colloids Surf B Biointerfaces. 2013;111:150–5.  https://doi.org/10.1016/j.colsurfb.2013.05.020.CrossRefPubMedGoogle Scholar
  94. 94.
    Aslam M, Aqil M, Ahad A, Najmi AK, Sultana Y, Ali A. Application of Box-Behnken design for preparation of glibenclamide loaded lipid based nanoparticles: optimization, in vitro skin permeation, drug release and in vivo pharmacokinetic study. J Mol Liq. 2016;219:897–908.  https://doi.org/10.1016/j.molliq.2016.03.069.CrossRefGoogle Scholar
  95. 95.
    Schneider M, Hirvonen J, Laaksonen T, Malinovskaja-Gomez K, Labouta HI. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles. Eur J Pharm Sci. 2016;89:154–62.  https://doi.org/10.1016/j.ejps.2016.04.034.CrossRefPubMedGoogle Scholar
  96. 96.
    Mennini N, Cirri M, Maestrelli F, Mura P. Comparison of liposomal and NLC (nanostructured lipid carrier) formulations for improving the transdermal delivery of oxaprozin: effect of cyclodextrin complexation. Int J Pharm. 2016;515(1–2):684–91.  https://doi.org/10.1016/j.ijpharm.2016.11.013.CrossRefPubMedGoogle Scholar
  97. 97.
    Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-González D, Wenz G, et al. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Control Release. 2010;141(1):85–92.  https://doi.org/10.1016/j.jconrel.2009.08.012.CrossRefPubMedGoogle Scholar
  98. 98.
    Joshi A, Kaur J, Kulkarni R, Chaudhari R. In-vitro and ex-vivo evaluation of raloxifene hydrochloride delivery using nano-transfersome based formulations. J Drug Deliv Sci Technol. 2018;45:151–8.  https://doi.org/10.1016/j.jddst.2018.02.006.CrossRefGoogle Scholar
  99. 99.
    Dutta K, Das B, Orasugh JT, Mondal D, Adhikari A, Rana D, et al. Bio-derived cellulose nanofibril reinforced poly(N-isopropylacrylamide)-g-guar gum nanocomposite: an avant-garde biomaterial as a transdermal membrane. Polymer. 2018;135:85–102.  https://doi.org/10.1016/j.polymer.2017.12.015.CrossRefGoogle Scholar
  100. 100.
    Fahmy UA, Aljaeid BM. Tadalafil transdermal delivery with alpha-lipoic acid self nanoemulsion for treatment of erectile dysfunction by diabetes mellitus. Int J Pharmacol. 2018;14(7):945–51.  https://doi.org/10.3923/ijp.2018.945.951.CrossRefGoogle Scholar
  101. 101.
    Zavgorodnya O, Penman AD, Bridges SL, Kharlampieva E, Carmona-Moran CA, Singh JA, et al. Development of gellan gum containing formulations for transdermal drug delivery: component evaluation and controlled drug release using temperature responsive nanogels. Int J Pharm. 2016;509(1–2):465–76.  https://doi.org/10.1016/j.ijpharm.2016.05.062.CrossRefPubMedGoogle Scholar
  102. 102.
    Saboktakin MR, Akhyari S, Nasirov FA. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system. Int J Biol Macromol. 2014;69:442–6.  https://doi.org/10.1016/j.ijbiomac.2014.05.062.CrossRefPubMedGoogle Scholar
  103. 103.
    Bose S, Du Y, Takhistov P, Michniak-Kohn B. Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int J Pharm. 2013;441(1–2):56–66.  https://doi.org/10.1016/j.ijpharm.2012.12.013.CrossRefPubMedGoogle Scholar
  104. 104.
    Tan JPK, Goh CH, Tam KC. Comparative drug release studies of two cationic drugs from pH-responsive nanogels. Eur J Pharm Sci. 2007;32(4–5):340–8.  https://doi.org/10.1016/j.ejps.2007.08.010.CrossRefPubMedGoogle Scholar
  105. 105.
    Mora L, Chumbimuni-Torres KY, Clawson C, Hernandez L, Zhang L, Wang J. Real-time electrochemical monitoring of drug release from therapeutic nanoparticles. J Control Release. 2009;140(1):69–73.  https://doi.org/10.1016/j.jconrel.2009.08.002.CrossRefPubMedGoogle Scholar
  106. 106.
    Wong TW, Nor KA. Physicochemical modulation of skin barrier by microwave for transdermal drug delivery. Pharm Res. 2013;30(1):90–103.  https://doi.org/10.1007/s11095-012-0852-z.CrossRefPubMedGoogle Scholar
  107. 107.
    Thermo Fisher Scientific USA. Slide-A-Lyzer™ MINI dialysis device, 10K MWCO, 2 mL https://www.thermofisher.com/order/catalog/product/88404. Accessed 20 Aug 2018.
  108. 108.
    Shahiwala A, Mehta T, Momin M. Parenteral drug delivery systems. In: Mishra A, Shahiwala A, editors. In-vitro and in-vivo tools in drug delivery research for optimum clinical outcomes. Florida: CRC; 2018.Google Scholar
  109. 109.
    Tan JPK, Tam KC. Application of drug selective electrode in the drug release study of pH-responsive microgels. J Control Release. 2007;118(1):87–94.  https://doi.org/10.1016/j.jconrel.2006.11.017.CrossRefPubMedGoogle Scholar
  110. 110.
    Rosenblatt KM, Douroumis D, Bunjes H. Drug release from differently structured monoolein/poloxamer nanodispersions studied with differential pulse polarography and ultrafiltration at low pressure. J Pharm Sci. 2007;96(6):1564–75.  https://doi.org/10.1002/jps.20808.CrossRefPubMedGoogle Scholar
  111. 111.
    Charalampopoulos N, Avgoustakis K, Kontoyannis CG. Differential pulse polarography: a suitable technique for monitoring drug release from polymeric nanoparticle dispersions. Anal Chim Acta. 2003;491(1):57–62.  https://doi.org/10.1016/S0003-2670(03)00788-8.CrossRefGoogle Scholar
  112. 112.
    Martin CA. Evaluating the utility of fiber optic analysis for dissolution testing of drug products. Dissolut Technol. 2003;10(4):37–9.  https://doi.org/10.14227/DT100403P37.CrossRefGoogle Scholar
  113. 113.
    Gray VA. Dissolution testing using fiber optics—a regulatory perspective. Dissolut Technol. 2003;10(4):33–6.  https://doi.org/10.14227/DT100403P33.CrossRefGoogle Scholar
  114. 114.
    Nir I, Lu X. In situ UV fiber optics for dissolution testing—what, why, and where we are after 30 years. Dissolution Technol. 2018;25(3):70–7. doi:  https://doi.org/10.14227/DT250318P70 CrossRefGoogle Scholar
  115. 115.
    Guillot A, Limberge M, Krämer J, Lehr CM. In situ drug release monitoring with a fiber-optic system: overcoming matrix interferences using derivative spectrophotometry. Dissolut Technol. 2013;20(2):15–9.  https://doi.org/10.14227/DT200213P15.CrossRefGoogle Scholar
  116. 116.
    Uddin R, Saffoon N, Bishwajit S. Dissolution and dissolution apparatus: a review. Int J Curr Biomed Pharm Res. 2011;1(4):201–7.  https://doi.org/10.1081/DDC-120021777.CrossRefGoogle Scholar
  117. 117.
    Bijlani V, Yuonayel D, Katpally S, Chukwumezie BN, Adeyeye MC. Monitoring ibuprofen release from multiparticulates: in situ fiber-optic technique versus the HPLC method: a technical note. AAPS PharmSciTech. 2007;8(3):E9–12.  https://doi.org/10.1208/pt0803052.CrossRefPubMedCentralGoogle Scholar
  118. 118.
    Voisine JM, Zolnik BS, Burgess DJ. In situ fiber optic method for long-term in vitro release testing of microspheres. Int J Pharm. 2008;356(1–2):206–11.  https://doi.org/10.1016/J.IJPHARM.2008.01.017.CrossRefPubMedGoogle Scholar
  119. 119.
    Liu L, Osei T, Hsu J, Greyling J. Evaluation of in-situ fiber optics dissolution method for compound A extended release tablets. Am Pharm Rev. 2011:1–9.Google Scholar
  120. 120.
    Romero EL, Morilla MJ. Ultradeformable phospholipid vesicles as a drug delivery system: a review. Res Rep Transderm Drug Deliv. 2015;4:55.  https://doi.org/10.2147/rrtd.s50370.CrossRefGoogle Scholar
  121. 121.
    Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70.  https://doi.org/10.1016/j.jsps.2017.10.012.CrossRefPubMedGoogle Scholar
  122. 122.
    Jijie R, Barras A, Boukherroub R, Szunerits S. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J Mater Chem B. 2017;5(44):8653–75.  https://doi.org/10.1039/c7tb02529g.CrossRefGoogle Scholar
  123. 123.
    Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370(1–2):181–6.  https://doi.org/10.1016/j.ijpharm.2008.11.014.CrossRefPubMedGoogle Scholar
  124. 124.
    Klang V, Haberfeld S, Hartl A, Valenta C. Effect of γ-cyclodextrin on the in vitro skin permeation of a steroidal drug from nanoemulsions: impact of experimental setup. Int J Pharm. 2012;423(2):535–42.  https://doi.org/10.1016/j.ijpharm.2011.11.037.CrossRefPubMedGoogle Scholar
  125. 125.
    Raupach K, El-Hagin N, Valenta C, Klang V, Matsko N. Development of sucrose stearate-based nanoemulsions and optimisation through γ-cyclodextrin. Eur J Pharm Biopharm. 2011;79(1):58–67.  https://doi.org/10.1016/j.ejpb.2011.01.010.CrossRefPubMedGoogle Scholar
  126. 126.
    Biondi M, Cilurzo F, Campani V, De Rosa G, Mayol L, Pitaro M. Development of nanoemulsions for topical delivery of vitamin K1. Int J Pharm. 2016;511(1):170–7.  https://doi.org/10.1016/j.ijpharm.2016.07.004.CrossRefPubMedGoogle Scholar
  127. 127.
    Qi T, Qi-lu L, Guang-xi Z, Yan-wei X, Chen-yu G, Chun-fen Y, et al. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm. 2012;430(1–2):292–8.  https://doi.org/10.1016/j.ijpharm.2012.03.042.CrossRefPubMedGoogle Scholar
  128. 128.
    Zheng Y, Syed S, Hao C-S, Wang B-Z, Ouyang W-Q, Wei Y-P, et al. Effects of Carbopol® 934 proportion on nanoemulsion gel for topical and transdermal drug delivery: a skin permeation study. Int J Nanomedicine. 2016;11:5971–87.  https://doi.org/10.2147/ijn.s119286.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Mazumder B, Ray S, Kaurav S, Ghosh S, Dasgupta S. In vitro & in vivo studies on lornoxicam loaded nanoemulsion gels for topical application. Curr Drug Deliv. 2014;11(1):132–8.  https://doi.org/10.2174/15672018113106660063.CrossRefPubMedGoogle Scholar
  130. 130.
    Kim BS, Won M, Lee KM, Kim CS. In vitro permeation studies of nanoemulsions containing ketoprofen as a model drug. Drug Deliv. 2008;15(7):465–9.  https://doi.org/10.1080/10717540802328599.CrossRefPubMedGoogle Scholar
  131. 131.
    Hussain Z, Katas H, Mohd Amin MCI, Kumolosasi E, Buang F, Sahudin S. Self-assembled polymeric nanoparticles for percutaneous co-delivery of hydrocortisone/hydroxytyrosol: an ex vivo and in vivo study using an NC/Nga mouse model. Int J Pharm. 2013;444(1–2):109–19.  https://doi.org/10.1016/j.ijpharm.2013.01.024.CrossRefPubMedGoogle Scholar
  132. 132.
    Akbari J, Saeedi M, Morteza-Semnani K, Rostamkalaei SS, Asadi M, Asare-Addo K, et al. The design of naproxen solid lipid nanoparticles to target skin layers. Colloids Surf B Biointerfaces. 2016;145:626–33.  https://doi.org/10.1016/j.colsurfb.2016.05.064.CrossRefPubMedGoogle Scholar
  133. 133.
    Abdel-Hafez SM, Hathout RM, Sammour OA. Tracking the transdermal penetration pathways of optimized curcumin-loaded chitosan nanoparticles via confocal laser scanning microscopy. Int J Biol Macromol. 2018;108:753–64.  https://doi.org/10.1016/j.ijbiomac.2017.10.170.CrossRefPubMedGoogle Scholar
  134. 134.
    Joshi SA, Jalalpure SS, Kempwade AA, Peram MR. Fabrication and in-vivo evaluation of lipid nanocarriers based transdermal patch of colchicine. J Drug Deliv Sci Technol. 2017;41:444–53.  https://doi.org/10.1016/j.jddst.2017.08.013.CrossRefGoogle Scholar
  135. 135.
    Anirudhan TS, Nair AS, Bino SJ. Nanoparticle assisted solvent selective transdermal combination therapy of curcumin and 5-flurouracil for efficient cancer treatment. Carbohydr Polym. 2017;173:131–42.  https://doi.org/10.1016/j.carbpol.2017.05.045.CrossRefPubMedGoogle Scholar
  136. 136.
    Ravikumar R, Ganesh M, Senthil V, Ramesh YV, Jakki SL, Choi EY. Tetrahydro curcumin loaded PCL-PEG electrospun transdermal nanofiber patch: preparation, characterization, and in vitro diffusion evaluations. J Drug Deliv Sci Technol. 2018;44:342–8.  https://doi.org/10.1016/j.jddst.2018.01.016.CrossRefGoogle Scholar
  137. 137.
    Ahmed TA, El-Say KM, Aljaeid BM, Fahmy UA, Abd-Allah FI. Transdermal glimepiride delivery system based on optimized ethosomal nano-vesicles: preparation, characterization, in vitro, ex vivo and clinical evaluation. Int J Pharm. 2016;500(1–2):245–54.  https://doi.org/10.1016/j.ijpharm.2016.01.017.CrossRefPubMedGoogle Scholar
  138. 138.
    Lin WJ, Duh YS. Nanostructured lipid carriers for transdermal delivery of acid labile lansoprazole. Eur J Pharm Biopharm. 2016;108:297–303.  https://doi.org/10.1016/j.ejpb.2016.07.015.CrossRefPubMedGoogle Scholar
  139. 139.
    Tsai MJ, Lu IJ, Fu YS, Fang YP, Huang YB, Wu PC. Nanocarriers enhance the transdermal bioavailability of resveratrol: in-vitro and in-vivo study. Colloids Surf B Biointerfaces. 2016;148:650–6.  https://doi.org/10.1016/j.colsurfb.2016.09.045.CrossRefPubMedGoogle Scholar
  140. 140.
    Aqil M, Moghaddam AA, Ahmad FJ, Ali A, Ahad A, Sultana Y. Ibuprofen loaded nano-ethanolic liposomes carbopol gel system: in vitro characterization and anti-inflammatory efficacy assessment in Wistar rats. J Polym Eng. 2017;38(3):291–8.  https://doi.org/10.1515/polyeng-2016-0462.CrossRefGoogle Scholar
  141. 141.
    Setya S, Razdan BK, Talegaonkar S, Tariq M, Madaan T. Appraisal of transdermal water-in-oil nanoemulgel of selegiline HCl for the effective management of Parkinson’s disease: pharmacodynamic, pharmacokinetic, and biochemical investigations. AAPS PharmSciTech. 2018;19(2):573–89.  https://doi.org/10.1208/s12249-017-0868-0.CrossRefPubMedGoogle Scholar
  142. 142.
    Abdulbaqi IM, Darwis Y, Assi RA, Khan NAK. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. Drug Des Devel Ther. 2018;12:795–813.  https://doi.org/10.2147/DDDT.S158018.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Kaur A, Bhoop BS, Chhibber S, Sharma G, Gondil VS, Katare OP. Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization and preclinical investigations for management of rheumatoid arthritis. Int J Pharm. 2017;533(1):206–24.  https://doi.org/10.1016/j.ijpharm.2017.09.041.CrossRefPubMedGoogle Scholar
  144. 144.
    Takeuchi I, Suzuki T, Makino K. Skin permeability and transdermal delivery route of 50-nm indomethacin-loaded PLGA nanoparticles. Colloids Surf B Biointerfaces. 2017;159:312–7.  https://doi.org/10.1016/j.colsurfb.2017.08.003.CrossRefPubMedGoogle Scholar
  145. 145.
    Qumbar M, Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: in-vitro characterization and in-vivo activity. Biomed Pharmacother. 2017;93:255–66.  https://doi.org/10.1016/j.biopha.2017.06.043.CrossRefPubMedGoogle Scholar
  146. 146.
    Sintov AC, Levy HV, Greenberg I. Continuous transdermal delivery of L-DOPA based on a self-assembling nanomicellar system. Pharm Res. 2017;34(7):1459–68.  https://doi.org/10.1007/s11095-017-2162-y.CrossRefPubMedGoogle Scholar
  147. 147.
    Arafa MG, Ayoub BM. DOE optimization of nano-based carrier of pregabalin as hydrogel: new therapeutic & chemometric approaches for controlled drug delivery systems. Sci Rep. 2017;7(1):41503.  https://doi.org/10.1038/srep41503.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Xu H, Liu J, Yang X, Ni Q, Chen H, Hu W. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2006;328(2):191–5.  https://doi.org/10.1016/j.ijpharm.2006.08.007.CrossRefPubMedGoogle Scholar
  149. 149.
    Trotta M, Peira E, Debernardi F, Gallarate M. Elastic liposomes for skin delivery of dipotassium glycyrrhizinate. Int J Pharm. 2002;241(2):319–27.  https://doi.org/10.1016/S0378-5173(02)00266-1.CrossRefPubMedGoogle Scholar
  150. 150.
    Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res. 2004;21(10):1818–25.  https://doi.org/10.1023/B:PHAM.0000045235.86197.ef.CrossRefPubMedGoogle Scholar
  151. 151.
    Habib BA, Sayed S, Elsayed GM. Enhanced transdermal delivery of ondansetron using nanovesicular systems: fabrication, characterization, optimization and ex-vivo permeation study—Box-Cox transformation practical example. Eur J Pharm Sci. 2018;115:352–61.  https://doi.org/10.1016/j.ejps.2018.01.044.CrossRefPubMedGoogle Scholar
  152. 152.
    Pireddu R, Sinico C, Ennas G, Schlich M, Valenti D, Murgia S, et al. The effect of diethylene glycol monoethyl ether on skin penetration ability of diclofenac acid nanosuspensions. Colloids Surf B Biointerfaces. 2018;162:8–15.  https://doi.org/10.1016/j.colsurfb.2017.11.012.CrossRefPubMedGoogle Scholar
  153. 153.
    Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040–6.  https://doi.org/10.1016/j.jsps.2017.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Alomrani AH, Badran MM. Flexosomes for transdermal delivery of meloxicam: characterization and antiinflammatory activity. Artif Cells Nanomed Biotechnol. 2017;45(2):305–12.  https://doi.org/10.3109/21691401.2016.1147452.CrossRefPubMedGoogle Scholar
  155. 155.
    Imam SS, Ahad A, Aqil M, Akhtar M, Sultana Y, Ali A. Formulation by design based risperidone nano soft lipid vesicle as a new strategy for enhanced transdermal drug delivery: in-vitro characterization, and in-vivo appraisal. Mater Sci Eng C. 2017;75:1198–205.  https://doi.org/10.1016/j.msec.2017.02.149.CrossRefGoogle Scholar
  156. 156.
    Butani D, Yewale C, Misra A. Topical amphotericin B solid lipid nanoparticles: design and development. Colloids Surf B Biointerfaces. 2016;139:17–24.  https://doi.org/10.1016/j.colsurfb.2015.07.032.CrossRefPubMedGoogle Scholar
  157. 157.
    Meng S, Zhang C, Shi W, Zhang X, Liu D, Wang P, et al. Preparation of osthole-loaded nano-vesicles for skin delivery: characterization, in vitro skin permeation and preliminary in vivo pharmacokinetic studies. Eur J Pharm Sci. 2016;92:49–54.  https://doi.org/10.1016/j.ejps.2016.04.033.CrossRefPubMedGoogle Scholar
  158. 158.
    Liu T, Niu X, Sun Q, Zhu Y, Wang XH, Wang L, et al. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers. Eur J Pharm Sci. 2017;99:240–5.  https://doi.org/10.1016/j.ejps.2016.12.026.CrossRefPubMedGoogle Scholar
  159. 159.
    Delgado-Charro MB, Guy RH. Effective use of transdermal drug delivery in children. Adv Drug Deliv Rev. 2014;73:63–82.  https://doi.org/10.1016/j.addr.2013.11.014.CrossRefPubMedGoogle Scholar
  160. 160.
    Michniak BB, Meidan V, Al-Khalili M, Wertz PW. Skin: physiology and penetration pathways. In: Meyer R, editor. Delivery system handbook for personal care and cosmetic products. Waltham: William Andrew-Elsevier; 2005. p. 77–100.Google Scholar
  161. 161.
    Cázares-Delgadillo J, Naik A, Kalia YN, Quintanar-Guerrero D, Ganem-Quintanar A. Skin permeation enhancement by sucrose esters: a pH-dependent phenomenon. Int J Pharm. 2005;297(1–2):204–12.  https://doi.org/10.1016/j.ijpharm.2005.03.020.CrossRefPubMedGoogle Scholar
  162. 162.
    Nair MK, Chetty DJ, Ho H, Chien YW. Biomembrane permeation of nicotine: mechanistic studies with porcine mucosae and skin. J Pharm Sci. 1997;86(2):257–62.  https://doi.org/10.1021/js960095w.CrossRefPubMedGoogle Scholar
  163. 163.
    Zorin S, Kuylenstierna F, Thulin H. In vitro test of nicotine’s permeability through human skin. Risk evaluation and safety aspects. Ann Occup Hyg. 1999;43(6):405–13.  https://doi.org/10.1016/S0003-4878(99)00030-7.CrossRefPubMedGoogle Scholar
  164. 164.
    Heard CM, Johnson S, Moss G, Thomas CP. In vitro transdermal delivery of caffeine, theobromine, theophylline and catechin from extract of guarana, Paullinia cupana. Int J Pharm. 2006;317(1):26–31.  https://doi.org/10.1016/j.ijpharm.2006.02.042.CrossRefPubMedGoogle Scholar
  165. 165.
    Chen L, Han L, Lian G. Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev. 2013;65(2):295–305.  https://doi.org/10.1016/j.addr.2012.05.001.CrossRefPubMedGoogle Scholar
  166. 166.
    Lehman PA, Raney SG, Franz TJ. Percutaneous absorption in man: in vitro-in vivo correlation. Skin Pharmacol Physiol. 2011;24(4):224–30.  https://doi.org/10.1159/000324884.CrossRefPubMedGoogle Scholar
  167. 167.
    Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64(SUPPL):128–37.  https://doi.org/10.1016/j.addr.2012.09.032.CrossRefGoogle Scholar
  168. 168.
    Azarmi S, Roa W, Löbenberg R. Current perspectives in dissolution testing of conventional and novel dosage forms. Int J Pharm. 2007;328(1 SPEC. ISS):12–21.  https://doi.org/10.1016/j.ijpharm.2006.10.001.CrossRefPubMedGoogle Scholar
  169. 169.
    Gillet A, Evrard B, Piel G. Liposomes and parameters affecting their skin penetration behaviour. J Drug Deliv Sci Technol. 2011;21(1):35–42.  https://doi.org/10.1016/S1773-2247(11)50004-8.CrossRefGoogle Scholar
  170. 170.
    Organisation for Economic Co-operation and Development (OECD). Joint meeting of the chemicals committee and the working party on chemicals, pesticides and biotechnology guidance notes on dermal absorption series on testing and assessment no. 156. ENV/JM/MONO(2011)36. 2011. https://www.oecd.org/chemicalsafety/testing/48532204.pdf. Accessed 10 Nov 2018.
  171. 171.
    Sartorelli P, Andersen HR, Angerer J, Corish J, Drexler H, Göen T, et al. Percutaneous penetration studies for risk assessment. Environ Toxicol Pharmacol. 2000;8(2):133–52.  https://doi.org/10.1016/S1382-6689(00)00035-1.CrossRefPubMedGoogle Scholar
  172. 172.
    Bronaugh R. Methods for in vitro percutaneous absorption. In: Zhai H, Maibach H, editors. Dermatotoxicology. New York: CRC; 2004. p. 520–6.Google Scholar
  173. 173.
    Roussel L, Abdayem R, Gilbert E, Pirot F, Haftek M. Influence of excipients on two elements of the stratum corneum barrier: intercellular lipids and epidermal tight junctions. In: Percutaneous penetration enhancers chemical methods in penetration enhancement: drug manipulation strategies and vehicle effects. Berlin: Springer; 2015. p. 69–92.  https://doi.org/10.1007/978-3-662-45013-0_7.CrossRefGoogle Scholar
  174. 174.
    Duan J, Seo P, Shah H, Suarez-Sharp S, Li M. Regulatory experience with in vivo in vitro correlations (IVIVC) in new drug applications. AAPS J. 2016;18(6):1379–90.  https://doi.org/10.1208/s12248-016-9966-2.CrossRefPubMedGoogle Scholar
  175. 175.
    Park K. Translation from mouse to human: time to think in new boxes. J Control Release. 2014;189:187.  https://doi.org/10.1016/j.jconrel.2014.07.046.CrossRefPubMedGoogle Scholar
  176. 176.
    Cardot JM, Beyssac E, Alric M. In vitro–in vivo correlation: importance of dissolution in IVIVC. Dissolut Technol. 2007;14(1):15–9.  https://doi.org/10.14227/DT140107P15.CrossRefGoogle Scholar
  177. 177.
    Sakore S, Chakraborty B. In vitro-in vivo correlation (IVIVC): a strategic tool in drug development. J Bioequiv Availab. 2011;8(4).  https://doi.org/10.4172/jbb.S3-001.
  178. 178.
    Kumar R, Nagarwal RC, Dhanawat M, Pandit JK. In-vitro and in-vivo study of indomethacin loaded gelatin nanoparticles. J Biomed Nanotechnol. 2011;7(3):325–33.  https://doi.org/10.1166/jbn.2011.1290.CrossRefPubMedGoogle Scholar
  179. 179.
    Cao X, Deng WW, Fu M, Wang L, Tong SS, Wei YW, et al. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int J Nanomedicine. 2012;7:753–62.  https://doi.org/10.2147/IJN.S28348.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Tiwari R, Pathak K. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int J Pharm. 2011;415(1–2):232–43.  https://doi.org/10.1016/j.ijpharm.2011.05.044.CrossRefPubMedGoogle Scholar
  181. 181.
    Huang Q, Li XM, Wei P, Wang Y, Chen B, Chen W, et al. Study on the release of fenofibrate nanosuspension in vitro and its correlation with in situ intestinal and in vivo absorption kinetics in rats. Drug Dev Ind Pharm. 2014;40(7):972–9.  https://doi.org/10.3109/03639045.2013.794828.CrossRefPubMedGoogle Scholar
  182. 182.
    Pavurala N, Khan MA, Krishnaiah YSR, Yang Y, Manda P. Development and validation of in vitro–in vivo correlation (IVIVC) for estradiol transdermal drug delivery systems. J Control Release. 2015;210:58–66.  https://doi.org/10.1016/j.jconrel.2015.05.263.CrossRefPubMedGoogle Scholar
  183. 183.
    Tirumalasetty PP, Mutalik S, Pillai R, Kondamudi PK, Malayandi R. Lidocaine transdermal patch: pharmacokinetic modeling and in vitro-in vivo correlation (IVIVC). AAPS PharmSciTech. 2016;17(3):588–96.  https://doi.org/10.1208/s12249-015-0390-1.CrossRefPubMedGoogle Scholar
  184. 184.
    Yan K, Yan T, Guo H, Li J, Wei L. Evaluation of transdermal permeability of pentoxifylline gel: in vitro skin permeation and in vivo microdialysis using Wistar rats. Drug Discov Ther. 2007;1(1):78–83.PubMedGoogle Scholar
  185. 185.
    Shen J, Burgess DJ. In vitro-in vivo correlation for complex non-oral drug products: where do we stand? J Control Release. 2015;219:644–51.  https://doi.org/10.1016/j.jconrel.2015.09.052.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Ravi Sheshala
    • 1
  • Nor Khaizan Anuar
    • 1
    • 2
  • Nor Hayati Abu Samah
    • 1
  • Tin Wui Wong
    • 2
    Email author
  1. 1.Department of Pharmaceutics, Faculty of PharmacyUniversiti Teknologi MARA SelangorBandar Puncak AlamMalaysia
  2. 2.Non-Destructive Biomedical and Pharmaceutical Research Centre, iPROMISEUniversiti Teknologi MARA SelangorBandar Puncak AlamMalaysia

Personalised recommendations