AAPS PharmSciTech

, 20:108 | Cite as

Enhanced Solubility of Alkaloids by Complexation with Polycarboxylic Materials for Controlled Release Formulations: Case of Peschiera fuchsiaefolia

  • Kouadio Victorien Konan
  • Tien Canh Le
  • Mircea Alexandru MateescuEmail author
Research Article


Malaria is a major public health problem with hundreds of thousands of deaths yearly. Extracts of Peschiera fuchsiaefolia (Pf), an Apocynaceae family plant, are used as malaria treatment by several populations. Artemisinin is another effective largely used antimalarial agent but susceptible to generate resistant forms of Plasmodium. To reduce the risk of new resistant strains’ appearance, the WHO recommended artemisinin-based combination therapy (ACT) with another bioactive agent, ensuring a long duration of antiplasmodial activity. Pf alkaloids are good candidates for ACT, but their solubility is very low. This research was aimed to improve the solubility of Pf alkaloids by complexation via their amine groups with carboxylate groups of carboxymethylstarch (CMS), an excipient used to formulate oral dosage forms for controlled drug release. It was found that when complexed as CMS-Pf, the solubility of Pf is increased (four to five times in function of dissolution medium). A new specific and faster approach to evaluate the solubility was proposed, measuring the effective saturation concentration of the compound of interest via one of its specific capacities, i.e., absorption capacity at a specific wavelength or antioxidant properties. This approach is more convenient for solubility evaluation of various active agents from complexes or crude extracts, or in heterogeneous samples. Also, the storage stability was markedly improved from 1 week for Pf co-processed with maltodextrin (MD/Pf) to several months for CMS-Pf (in similar controlled temperature and humidity conditions). The co-processing as MD/Pf or complexation as CMS-Pf affected physical properties but not the biological (i.e., antioxidant) activity of Pf.


alkaloid solubilization controlled release formulation natural soluble antioxidant agent Peschiera fuchsiaefolia solubility improvement solubility evaluation methods 



Support from NSERC (Natural Sciences and Engineering Research Council) of Canada granted to M.A.M. for this project is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

12249_2019_1315_MOESM1_ESM.docx (5.8 mb)
Supplementary Figures (DOCX 5888 kb)


  1. 1.
    Combined Chemical Dictionnary. Alkaloids. CRC Press: Taylor and Francis Group, 2017. Alkaloids. http://ccd.chemnetba Results. xhtml. Accessed 2 Nov 2017.
  2. 2.
    Murphy D. J. 2017. Alkaloids. In B. Thomas, B. G. Murray et D. J. Murphy, Encyclopedia of applied plant sciences (2nd Ed.) (p. 118-124). Oxford : Academic Press.Google Scholar
  3. 3.
    Souto AL, Tavares JF, Da Silva MS, Diniz MdFFM, De Athayde-Filho PF, Barbosa Filho JM. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 2011;16:8515–8534.Google Scholar
  4. 4.
    Küpeli E, Koşar M, Yeşilada E, Başer KHC. A comparative study on the anti-inflammatory, antinociceptive and antipyretic effects of isoquinoline alkaloids from the roots of Turkish Berberis species. Life Sci. 2002;72:645–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Song Z, Ao M. Research progress of alkaloids in Uncaria. Med Plant. 2014;5:56–8.Google Scholar
  6. 6.
    Lau Y-S, Machha A, Achike FI, Murugan D, Mustafa MR. The aporphine alkaloid boldine improves endothelial function in spontaneously hypertensive rats. Exp Biol Med. 2012;237:93–8.CrossRefGoogle Scholar
  7. 7.
    Roberts MF. Alkaloids: biochemistry, ecology, and medicinal applications: Springer Science & Business Media; 2013.Google Scholar
  8. 8.
    Isah T. Anticancer alkaloids from trees: development into drugs. Pharmacogn Rev. 2016;10:90–9.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Winzer T, Gazda V, He Z, Kaminski F, Kern M, Larson TR, et al. A Papaver somniferum 10-gene cluster for synthesis of the anticancer alkaloid noscapine. Science. 2012;336:1704–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou L-N, Ge X-L, Dong T-T, Gao H-Y, Sun B-H. Antibacterial steroidal alkaloids from Holarrhena antidysenteriaca. Chin J Nat Med. 2017;15:540–5.PubMedGoogle Scholar
  11. 11.
    Nair JJ, Wilhelm A, Bonnet SL, Van Staden J. Antibacterial constituents of the plant family Amaryllidaceae. Bioorg Med Chem Lett. 2017;27:4943–51.PubMedCrossRefGoogle Scholar
  12. 12.
    Frederich M, Tits M, Angenot L. Potential antimalarial activity of indole alkaloids. Trans R Soc Trop Med Hyg. 2008;102:11–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Komlaga G, Genta-Jouve G, Cojean S, Dickson RA, Mensah MLK, Loiseau PM, et al. Antiplasmodial Securinega alkaloids from Phyllanthus fraternus: discovery of natural (+)-allonorsecurinine. Tetrahedron Lett. 2017;58:3754–6.CrossRefGoogle Scholar
  14. 14.
    Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature. 2005;434:214–7.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    World Health Organization. World Malaria Report 2017. Geneva, Switzerland: World Health Organization, 2017; 196 p. Accessed April, 05th 2018:
  16. 16.
    World Health Organization. Malaria-Areas of work: Overview of malaria treatment. World Health Organization, Geneva, Switzerland. Accessed April 05th, 2018:
  17. 17.
    Ancolio C, Azas N, Mahiou V, Ollivier E, Di Giorgio C, Keita A, et al. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother Res. 2002;16:646–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Frédérich M, Tits M, Hayette M-P, Brandt V, Penelle J, DeMol P, et al. 10 ‘-Hydroxyusambarensine, a new antimalarial bisindole alkaloid from the roots of Strychnos usambarensis. J Nat Prod. 1999;62:619–21.PubMedCrossRefGoogle Scholar
  19. 19.
    Asrade S, Mengesha Y, Moges G, Gelayee DA. In vivo antiplasmodial activity evaluation of the leaves of Balanites rotundifolia (Van Tiegh.) Blatter (Balanitaceae) against Plasmodium berghei. J Exp Pharmacol. 2017;9:59.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Meschini S, Marra M, Calcabrini A, Federici E, Galeffi C, Arancia G. Voacamine, a bisindolic alkaloid from Peschiera fuchsiaefolia, enhances the cytotoxic effect of doxorubicin on multidrug-resistant tumor cells. Int J Oncol. 2003;23:1505–13.PubMedGoogle Scholar
  21. 21.
    Zocoler MA, Oliveira AJBd, Sarragiotto MH, Grzesiuk VL, Vidotti GJ. Qualitative determination of indole alkaloids of Tabernaemontana fuchsiaefolia (Apocynaceae). J Braz Chem Soc. 2005;16:1372–7.Google Scholar
  22. 22.
    Federici E, Palazzino G, Nicoletti M, Galeffi C. Antiplasmodial activity of the alkaloids of Peschiera fuchsiaefolia. Planta Med. 2000;66:93–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Chowdhury SR, Kumar A, Godinho JLP, Silva STDM, Zuma AA, Saha S, et al. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochem Pharmacol. 2017;138:19–30.PubMedCrossRefGoogle Scholar
  24. 24.
    Chaudhary A, Nagaich U, Gulati N, Sharma VK, Khosa RL, Partapur MU. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. J Adv Pharm Educ Res. 2012;2:32–67.Google Scholar
  25. 25.
    Savjani KT, Gajjar AK, Savjani JK. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012;195727:10 pp.Google Scholar
  26. 26.
    Shao D, Yang Z, Zhou G, Chen J, Zheng S, Lv X, et al. Improving the solubility of acipimox by cosolvents and the study of thermodynamic properties on solvation process. J Mol Liq. 2018;262:389–95.CrossRefGoogle Scholar
  27. 27.
    Asghar SZ, Jouyban A, Martinez F, Rahimpour E. Solubility of naproxen in ternary mixtures of {ethanol + propylene glycol + water} at various temperatures: data correlation and thermodynamic analysis. J Mol Liq. 2018;268:517–22.CrossRefGoogle Scholar
  28. 28.
    Dizaj SM. Preparation and study of vitamin A palmitate microemulsion drug delivery system and investigation of co-surfactant effect. J Nanostruct Chem. 2013;3:59.CrossRefGoogle Scholar
  29. 29.
    Raval AJ, Patel MM. Preparation and characterization of nanoparticles for solubility and dissolution rate enhancement of meloxicam. Int Res J Pharm. 2011;1:42–9.Google Scholar
  30. 30.
    Jagdale SC, Jadhav VN, Chabukswar AR, Kuchekar BS. Solubility enhancement, physicochemical characterization and formulation of fast-dissolving tablet of nifedipine-betacyclodextrin complexes. Braz J Pharm Sci. 2012;48:131–45.CrossRefGoogle Scholar
  31. 31.
    Sabzevari A, Adibkia K, Hashemi H, De Geest BG, Mohsenzadeh N, Atyabi F, et al. Improved anti-inflammatory effects in rabbit eye model using biodegradable poly beta-amino ester nanoparticles of triamcinolone acetonide. Invest Ophthalmol Vis Sci. 2013;54:5520–6.PubMedCrossRefGoogle Scholar
  32. 32.
    Das SK, Kahali N, Bose A, Khanam J. Physicochemical characterization and in vitro dissolution performance of ibuprofen-Captisol® (sulfobutylether sodium salt of β-CD) inclusion complexes. J Mol Liq. 2018;261:239–49.CrossRefGoogle Scholar
  33. 33.
    Zhang L, Liu M, Lu C, Ren D, Fan G, Liu C, et al. The hydroxypropyl–β-cyclodextrin complexation of toltrazuril for enhancing bioavailability. Drug Des Devel Ther. 2018;12:583–9.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kawakami K. Miscibility analysis of particulate solid dispersions prepared by electrospray deposition. Int J Pharm. 2012;433:71–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Tabbakhian M, Hasanzadeh F, Tavakoli N, Jamshidian Z. Dissolution enhancement of glibenclamide by solid dispersion: solvent evaporation versus a supercritical fluid-based solvent -antisolvent technique. Res Pharm Sci. 2014;9:337–50.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Yuvaraja K, Das SK, Khanam J. Process optimization and characterization of carvedilol solid dispersion with hydroxypropyl-β-cyclodextrin and tartaric acid. Korean J Chem Eng. 2015;32:132–40.CrossRefGoogle Scholar
  37. 37.
    Javadzadeh Y, Ahadi F, Davaran S, Mohammadi G, Sabzevari A, Adibkia K. Preparation and physicochemical characterization of naproxen-PLGA nanoparticles. Colloids Surf B: Biointerfaces. 2010;81:498–502.PubMedCrossRefGoogle Scholar
  38. 38.
    Mohammadi G, Nokhodchi A, Barzegar-Jalali M, Lotfipour F, Adibkia K, Ehyaei N, et al. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Colloids Surf B. 2011;88:39–44.CrossRefGoogle Scholar
  39. 39.
    U.S. Food and Drug Administration. GRAS Notice 616: Acetylated high amylose corn starc. In: US FDA, editor. GRAS Notice 2016.Google Scholar
  40. 40.
    Zhou M, Shi L, Cheng F, Lin Y, Zhu PX. High-efficient preparation of carboxymethyl starch via ball milling with limited solvent content. Starch-Stärke DOI. 2018;70:1700250.Google Scholar
  41. 41.
    Haroon M, Wang L, Yu H, Ullah RS, Zain Ul A, Khan RU, et al. Synthesis of carboxymethyl starch-g-polyvinylpyrolidones and their properties for the adsorption of rhodamine 6G and ammonia. Carbohydr Polym. 2018;186:150–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Assaad E, Mateescu MA. The influence of protonation ratio on properties of carboxymethyl starch excipient at various substitution degrees: structural insights and drug release kinetics. Int J Pharm. 2010;394:75–84.PubMedCrossRefGoogle Scholar
  43. 43.
    Le Tien C, Millette M, Mateescu MA, Lacroix M. Modified alginate and chitosan for lactic acid bacteria immobilization. Biotechnol Appl Biochem. 2004;39:347–54.CrossRefGoogle Scholar
  44. 44.
    Stojanović Ž, Jeremić K, Jovanović S, Lechner MD. A comparison of some methods for the determination of the degree of substitution of carboxymethyl starch. Starch - Stärke. 2005;57:79–83.CrossRefGoogle Scholar
  45. 45.
    Konan KV, Le Tien C, Mateescu MA. Electrolysis-induced fast activation of the ABTS reagent for an antioxidant capacity assay. Anal Methods. 2016;8:5638–44.CrossRefGoogle Scholar
  46. 46.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Iveković D, Milardović S, Roboz M, Grabarić BS. Evaluation of the antioxidant activity by flow injection analysis method with electrochemically generated ABTS radical cation. Analyst. 2005;130:708–14.PubMedCrossRefGoogle Scholar
  48. 48.
    U.S Pharmacopoeia-National Formulary (USP 40 NF 35). Description and Relative solubility of USP and NF Articles. United States Pharmacopeial Convention, Inc; 2016; Rockville, Md, USA, 2017. p. 2453–2454.Google Scholar
  49. 49.
    Cano-Chauca M, Stringheta PC, Ramos AM, Cal-Vidal J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov Food Sci Emerg Tech. 2005;6:420–8.CrossRefGoogle Scholar
  50. 50.
    U.S Pharmacopoeia-National Formulary (USP 40 NF 35). Dissolution. United States Pharmacopeial Convention, Inc. 2016; Rockville, Md, USA, 2017. p. 588–610.Google Scholar
  51. 51.
    Lemieux M, Gosselin P, Mateescu MA. Influence of drying procedure and of low degree of substitution on the structural and drug release properties of carboxymethyl starch. AAPS PharmSciTech. 2010;11:775–85.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Calinescu C, Mulhbacher J, Nadeau É, Fairbrother JM, Mateescu MA. Carboxymethyl high amylose starch (CM-HAS) as excipient for Escherichia coli oral formulations. Eur J Pharm Biopharm. 2005;60:53–60.PubMedCrossRefGoogle Scholar
  53. 53.
    Calinescu C, Mateescu MA. Carboxymethyl high amylose starch: chitosan self-stabilized matrix for probiotic colon delivery. Eur J Pharm Biopharm. 2008;70:582–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Herraiz T, Galisteo J. Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic Res. 2004;38:323–31.PubMedCrossRefGoogle Scholar
  55. 55.
    Chaiyana W, Punyoyai C, Somwongin S, Leelapornpisid P, Ingkaninan K, Waranuch N, et al. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex vaucher extract as functional food and nutraceuticals ingredients. Nutrients. 2017;9:1105.PubMedCentralCrossRefGoogle Scholar
  56. 56.
    Wang H, Guo X, Hu X, Li T, Fu X, Liu RH. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017;217:773–81.PubMedCrossRefGoogle Scholar
  57. 57.
    Ping G, Wang Y, Shen L, Wang Y, Hu X, Chen J, et al. Highly efficient complexation of sanguinarine alkaloid by carboxylatopillar[6]arene: pKa shift, increased solubility and enhanced antibacterial activity. Chem Commun. 2017;53:7381–4.CrossRefGoogle Scholar
  58. 58.
    Majewska K, Skwierawska A, Kamińska B, Prześniak-Welenc M. Improvement of opipramol base solubility by complexation with β-cyclodextrin. Supramol Chem. 2018;30:20–31.CrossRefGoogle Scholar
  59. 59.
    Gürten B, Yenigül E, Sezer AD, Malta S. Complexation and enhancement of temozolomide solubility with cyclodextrins. Braz J Pharm Sci. 2018;54:e17513.CrossRefGoogle Scholar
  60. 60.
    Lu P-J, Hsu P-I, Chen C-H, Hsiao M, Chang W-C, Tseng H-H, et al. Gastric juice acidity in upper gastrointestinal diseases. World J Gastroenterol. 2010;16:5496–501.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pratiwi M, Faridah DN, Lioe HN. Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): a review. Starch-Stärke. DOI:2018;70:1700028.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Kouadio Victorien Konan
    • 1
  • Tien Canh Le
    • 1
  • Mircea Alexandru Mateescu
    • 1
    Email author
  1. 1.Department of Chemistry, Research Chair on Enteric Dysfunctions “Allerdys”, Pharmaqam and CERMO-FC CentersUniversité du Québec à MontréalMontréalCanada

Personalised recommendations