Advertisement

AAPS PharmSciTech

, 20:32 | Cite as

A Novel Phytantriol-Based Lyotropic Liquid Crystalline Gel for Efficient Ophthalmic Delivery of Pilocarpine Nitrate

  • Xingqi Wang
  • Yong Zhang
  • Jie Huang
  • Chunling Tian
  • Mengqiu Xia
  • Liu Liu
  • Zhengguang Li
  • Jiaojiao Cao
  • Shuangying Gui
  • Xiaoqin Chu
Research Article
  • 23 Downloads

Abstract

The purpose of this paper was to investigate the potential of liquid crystalline (LC) gels for ophthalmic delivery, so as to enhance the bioavailability of pilocarpine nitrate (PN). The gels were prepared by a vortex method using phytantriol and water (in the ratio of 73:27 w/w). Their inner structures were confirmed by crossed polarized light microscopy, small-angle X-ray scattering, attenuated total reflectance-Fourier transform infrared spectrum, and rheology. The in vitro release studies revealed that PN could keep sustained release from the gels over a period of 12 h. The ex vivo apparent permeability coefficient of the gels demonstrated a 3.83-folds (P < 0.05) increase compared with that of eye drops. The corneal hydration levels of the gel maintained in the normal range of 79.46 ± 2.82%, hinting that the gel could be considered non-damaging and safe to the eyes. Furthermore, in vivo residence time evaluation suggested that a better retention performance of LC gel was observed in rabbit’s eyes compared to eye drops. In vivo ocular irritation study indicated that LC gel was nonirritant and might be suitable for various eye applications. In conclusion, LC gels might represent a potential ophthalmic delivery strategy to overcome the limitations of eye drops.

KEY WORDS

phytantriol liquid crystalline gel cubic phase ophthalmic delivery pilocarpine nitrate 

Notes

Acknowledgements

The authors gratefully acknowledge support from the National Natural Science Foundation of China (No. 81803831, 81873019, 81573615), Key University natural science research project of Anhui province (KJ2018A0301), Anhui Provincial Talents Project for youth in Universities (No. gxyq2018025), Exploratory Research Projects of Anhui University of Chinese Medicine (RD18200130), and Anhui Provincial Natural Science Foundation (No. 1408085QH183). The authors express special thanks to Dr. Xiaoqin Chu for useful communication.

Compliance with Ethical Standards

All animal studies were carried out in accordance with the guidelines for assessment and approval by the ethics committee of Anhui University of Chinese medicine (Hefei, China).

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Huang J, Peng T, Li Y, Zhan Z, Zeng Y, Huang Y, et al. Ocular Cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, Ex Vivo, and In Vivo evaluation. AAPS PharmSciTech. 2017;18(8):2919–26.  https://doi.org/10.1208/s12249-017-0763-8.CrossRefPubMedGoogle Scholar
  2. 2.
    Pang X, Li J, Pi J, Qi D, Guo P, Li N, et al. Increasing efficacy and reducing systemic absorption of brimonidine tartrate ophthalmic gels in rabbits. Pharm Dev Technol. 2018;23(3):231–9.  https://doi.org/10.1080/10837450.2017.1328693.CrossRefPubMedGoogle Scholar
  3. 3.
    Wu W, Li J, Wu L, Wang B, Wang Z, Xu Q, et al. Ophthalmic delivery of brinzolamide by liquid crystalline nanoparticles: in vitro and in vivo evaluation. AAPS PharmSciTech. 2013;14(3):1063–71.  https://doi.org/10.1208/s12249-013-9997-2.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Li J, Wu L, Wu W, Wang B, Wang Z, Xin H, et al. A potential carrier based on liquid crystal nanoparticles for ophthalmic delivery of pilocarpine nitrate. Int J Pharm. 2013;455(1–2):75–84.  https://doi.org/10.1016/j.ijpharm.2013.07.057.CrossRefPubMedGoogle Scholar
  5. 5.
    Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv. 2014;5(12):1297–315.  https://doi.org/10.4155/tde.14.75.CrossRefPubMedGoogle Scholar
  6. 6.
    Pekka S, Tomi J, Pekka P, Arto U. Permeability of pilocarpic acid diesters across albino rabbit cornea in vitro. Int J Pharm. 1991;74:221–8.CrossRefGoogle Scholar
  7. 7.
    Gan L, Han S, Shen J, Zhu J, Zhu C, Zhang X, et al. Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: improving preocular retention and ocular bioavailability. Int J Pharm. 2010;396(1–2):179–87.  https://doi.org/10.1016/j.ijpharm.2010.06.015.CrossRefPubMedGoogle Scholar
  8. 8.
    Guo C, Wang J, Cao F, Lee RJ, Zhai G. Lyotropic liquid crystal systems in drug delivery. Drug Discov Today. 2010;15(23–24):1032–40.  https://doi.org/10.1016/j.drudis.2010.09.006.CrossRefPubMedGoogle Scholar
  9. 9.
    Mulet X, Boyd BJ, Drummond CJ. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J Colloid Interface Sci. 2013;393:1–20.  https://doi.org/10.1016/j.jcis.2012.10.014.CrossRefPubMedGoogle Scholar
  10. 10.
    Clogston J, Caffrey M. Controlling release from the lipidic cubic phase. Amino acids, peptides, proteins and nucleic acids. J Control Release. 2005;107(1):97–111.  https://doi.org/10.1016/j.jconrel.2005.05.015.CrossRefPubMedGoogle Scholar
  11. 11.
    Qin L, Mei L, Shan Z, Huang Y, Pan X, Li G, et al. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent. Drug Dev Ind Pharm. 2016;42(2):307–16.  https://doi.org/10.3109/03639045.2015.1052079.CrossRefPubMedGoogle Scholar
  12. 12.
    Dai J, Kim JC. Photo responsive monoolein cubic phase containing coumarin-Tween 20 conjugates. Drug Dev Ind Pharm. 2013;39(9):1457–63.  https://doi.org/10.3109/03639045.2012.728225.CrossRefPubMedGoogle Scholar
  13. 13.
    Du JD, Liu Q, Salentinig S, Nguyen TH, Boyd BJ. A novel approach to enhance the mucoadhesion of lipid drug nanocarriers for improved drug delivery to the buccal mucosa. Int J Pharm. 2014;471(1–2):358–65.  https://doi.org/10.1016/j.ijpharm.2014.05.044.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen Y, Liang X, Ma P, Tao Y, Wu X, Wu X, et al. Phytantriol-based in situ liquid crystals with long-term release for intra-articular administration. AAPS PharmSciTech. 2015;16(4):846–54.  https://doi.org/10.1208/s12249-014-0277-6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Han K, Pan X, Chen M, Wang R, Xu Y, Feng M, et al. Phytantriol-based inverted type bicontinuous cubic phase for vascular embolization and drug sustained release. Eur J Pharm Sci. 2010;41(5):692–9.  https://doi.org/10.1016/j.ejps.2010.09.012.CrossRefPubMedGoogle Scholar
  16. 16.
    Mei L, Huang X, Xie Y, Chen J, Huang Y, Wang B, et al. An injectable in situ gel with cubic and hexagonal nanostructures for local treatment of chronic periodontitis. Drug Deliv. 2017;24(1):1148–58.  https://doi.org/10.1080/10717544.2017.1359703.CrossRefPubMedGoogle Scholar
  17. 17.
    Bu M, Tang J, Wei Y, Sun Y, Wang X, Wu L, et al. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea. Int J Nanomedicine. 2015;10:6879–89.  https://doi.org/10.2147/IJN.S82944.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Van ‘t Hag L, Shen HH, Lu J, Hawley AM, Gras SL, Drummond CJ, et al. Deconvoluting the effect of the hydrophobic and hydrophilic domains of an amphiphilic integral membrane protein in lipid Bicontinuous cubic Mesophases. Langmuir. 2015;31(44):12025–34.  https://doi.org/10.1021/acs.langmuir.5b03256.CrossRefGoogle Scholar
  19. 19.
    Barauskas J, Landh T. Phase behavior of the phytantriol/water system. Langmuir. 2003;19(23):9562–5.CrossRefGoogle Scholar
  20. 20.
    Carvalho FC, Campos ML, Peccinini RG, Gremião MP. Nasal administration of liquid crystal precursor mucoadhesive vehicle as an alternative antiretroviral therapy. Eur J Pharm Biopharm. 2013;84(1):219–27.CrossRefGoogle Scholar
  21. 21.
    Liang X, Chen YL, Jiang XJ, Wang SM, Zhang JW, Gui SY. HII mesophase as a drug delivery system for topical application of methyl salicylate. Eur J Pharm Sci. 2017;100:155–62.  https://doi.org/10.1016/j.ejps.2016.12.033.CrossRefPubMedGoogle Scholar
  22. 22.
    Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larsson K. Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids. 2001;109(1):47–62.CrossRefGoogle Scholar
  23. 23.
    Fong WK, Hanley T, Boyd BJ. Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release. 2009;135(3):218–26.  https://doi.org/10.1016/j.jconrel.2009.01.009.CrossRefPubMedGoogle Scholar
  24. 24.
    Wei G, Xu H, Ding PT, Li SM, Zheng JM. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release. 2002;83(1):65–74.CrossRefGoogle Scholar
  25. 25.
    Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.CrossRefGoogle Scholar
  26. 26.
    Mohanty B, Majumdar DK, Mishra SK, Panda AK, Patnaik S. Development and characterization of itraconazole-loaded solid lipid nanoparticles for ocular delivery. Pharm Dev Technol. 2015;20(4):458–64.  https://doi.org/10.3109/10837450.2014.882935.CrossRefPubMedGoogle Scholar
  27. 27.
    Saettone MF, Patrizia CP, Riccardo C, Gabriela M, Laura B. Evaluation of ocular permeation enhancers: in vitro effects on corneal transport of four fl-blockers, and in vitro/in vivo toxic activity. Int J Pharm. 1996;142:103–13.CrossRefGoogle Scholar
  28. 28.
    Bhatta RS, Chandasana H, Chhonker YS, Rathi C, Kumar D, Mitra K, et al. Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: in vitro and pharmacokinetics studies. Int J Pharm. 2012;432:105–12.  https://doi.org/10.1016/j.ijpharm.2012.04.060.CrossRefPubMedGoogle Scholar
  29. 29.
    Báez-Santos YM, Otte A, Mun EA, Soh BK, Song CG, Lee YN, et al. Formulation and characterization of a liquid crystalline hexagonal mesophase region of phosphatidylcholine, sorbitan monooleate, and tocopherol acetate for sustained delivery of leuprolide acetate. Int J Pharm. 2016;514(1):314–21.  https://doi.org/10.1016/j.ijpharm.2016.06.138.CrossRefPubMedGoogle Scholar
  30. 30.
    Li Q, Cao J, Li Z, Chu X. Cubic liquid crystalline gels based on glycerol monooleate for intra-articular injection. AAPS PharmSciTech. 2018;19(2):858–65.  https://doi.org/10.1208/s12249-017-0894-y.CrossRefPubMedGoogle Scholar
  31. 31.
    Borgheti-Cardoso LN, Depieri LV, Kooijmans SA, Diniz H, Calzzani RA, Vicentini FT, et al. An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs. Eur J Pharm Sci. 2015;74:103–17.  https://doi.org/10.1016/j.ejps.2015.04.017.CrossRefPubMedGoogle Scholar
  32. 32.
    Amar-Yuli I, Wachtel E, Shoshan EB, Danino D, Aserin A, Garti N. Hexosome and hexagonal phases mediated by hydration and polymeric stabilizer. Langmuir. 2007;23(7):3637–45.  https://doi.org/10.1021/la062851b.CrossRefPubMedGoogle Scholar
  33. 33.
    Mezzenga R, Grigorov M, Zhang Z, Servais C, Sagalowicz L, Romoscanu AI, et al. Polysaccharide-induced order-to-order transitions in lyotropic liquid crystals. Langmuir. 2005;21(14):6165–9.  https://doi.org/10.1021/la050905w.CrossRefPubMedGoogle Scholar
  34. 34.
    Zhai J, Tran N, Sarkar S, Fong C, Mulet X, Drummond CJ. Self-assembled Lyotropic liquid crystalline phase behavior of monoolein-capric acid-phospholipid Nanoparticulate systems. Langmuir. 2017;33(10):2571–80.  https://doi.org/10.1021/acs.langmuir.6b04045.CrossRefPubMedGoogle Scholar
  35. 35.
    Patil SS, Venugopal E, Bhat S, Mahadik KR, Paradkar AR. Exploring microstructural changes in structural analogues of ibuprofen-hosted in situ gelling system and its influence on pharmaceutical performance. AAPS PharmSciTech. 2015;16(5):1153–9.  https://doi.org/10.1208/s12249-015-0308-y.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bitan-Cherbakovsky L, Aserin A, Garti N. The effect of dendrimer generations on the structure of Q(G) LLC mesophase and drug release. Colloids Surf B: Biointerfaces. 2014;122:30–7.  https://doi.org/10.1016/j.colsurfb.2014.05.013.CrossRefPubMedGoogle Scholar
  37. 37.
    Bitan-Cherbakovsky L, Libster D, Aserin A, Garti N. Complex dendrimer-lyotropic liquid crystalline systems: structural behavior and interactions. J Phys Chem B. 2011;115(42):11984–92.  https://doi.org/10.1021/jp2030939.CrossRefPubMedGoogle Scholar
  38. 38.
    Bitan-Cherbakovsky L, Aserin A, Garti N. Structural characterization of lyotropic liquid crystals containing a dendrimer for solubilization and release of gallic acid. Colloids Surf B: Biointerfaces. 2013;112:87–95.  https://doi.org/10.1016/j.colsurfb.2013.06.051.CrossRefPubMedGoogle Scholar
  39. 39.
    Amar-Yuli I, Aserin A, Garti N. Solubilization of nutraceuticals into reverse hexagonal mesophases. J Phys Chem B. 2008;112(33):10171–80.  https://doi.org/10.1021/jp802737k.CrossRefPubMedGoogle Scholar
  40. 40.
    Sovago M, Campen RK, Wurpel GW, Müller M, Bakker HJ, Bonn M. Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys Rev Lett. 2008;100(17):173901.  https://doi.org/10.1103/PhysRevLett.100.173901.CrossRefPubMedGoogle Scholar
  41. 41.
    Libster D, Aserin A, Yariv D, Shoham G, Garti N. Soft matter dispersions with ordered inner structures, stabilized by ethoxylated phytosterols. Colloids Surf B: Biointerfaces. 2009;74(1):202–15.  https://doi.org/10.1016/j.colsurfb.2009.07.020.CrossRefPubMedGoogle Scholar
  42. 42.
    Amar-Yuli I, Wachtel E, Shalev DE, Aserin A, Garti N. Low viscosity reversed hexagonal mesophases induced by hydrophilic additives. J Phys Chem B. 2008;112(13):3971–82.  https://doi.org/10.1021/jp711421k.CrossRefPubMedGoogle Scholar
  43. 43.
    Achrai B, Libster D, Aserin A, Garti N. Solubilization of gabapentin into HII mesophases. J Phys Chem B. 2011;115(5):825–35.  https://doi.org/10.1021/jp108801d.CrossRefPubMedGoogle Scholar
  44. 44.
    Xu Y, Li V, Li J, Pan D, Langenbucher G, Mathias N. Characterization of a liquid crystal system for sustained release of a peptide BMS-686117. AAPS PharmSciTech. 2018;19(1):348–57.  https://doi.org/10.1208/s12249-017-0835-9.CrossRefPubMedGoogle Scholar
  45. 45.
    Gratieri T, Gelfuso GM, Rocha EM, Sarmento VH, Freitas O, Lopez RF. A poloxamer/chitosan in situ forming gel with prolonged retention time for ocular delivery. Eur J Pharm Biopharm. 2010;75(2):186–93.  https://doi.org/10.1016/j.ejpb.2010.02.011.CrossRefPubMedGoogle Scholar
  46. 46.
    Shrestha RG, Sakai K, Sakai H, Abe M. Rheological properties of polyoxyethylene cholesteryl ether wormlike micelles in aqueous system. J Phys Chem B. 2011;115(12):2937–46.  https://doi.org/10.1021/jp110962t.CrossRefPubMedGoogle Scholar
  47. 47.
    Fernández-Ferreiro A, González Barcia M, Gil-Martínez M, Vieites-Prado A, Lema I, Argibay B, et al. In vitro and in vivo ocular safety and eye surface permanence determination by direct and magnetic resonance imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm. 2015;94:342–51.  https://doi.org/10.1016/j.ejpb.2015.06.003.CrossRefPubMedGoogle Scholar
  48. 48.
    Miller SC, Drabik BR. Rheological properties of poloxamer vehicles. Int J Pharm. 1984;18:269–76.CrossRefGoogle Scholar
  49. 49.
    Chu X, Li Q, Gui S, Li Z, Cao J, Jiang J. Characterization and In Vitro permeation study of cubic liquid crystal containing sinomenine hydrochloride. AAPS PharmSciTech. 2018;19:2237–46.  https://doi.org/10.1208/s12249-018-1018-z.CrossRefGoogle Scholar
  50. 50.
    Wang X, Zhang Y, Gui S, Huang J, Cao J, Li Z, et al. Characterization of lipid-based lyotropic liquid crystal and effects of guest molecules on its microstructure: a systematic review. AAPS PharmSciTech. 2018;19(5):2023–40.  https://doi.org/10.1208/s12249-018-1069-1.CrossRefPubMedGoogle Scholar
  51. 51.
    Bisset NB, Boyd BJ, Dong YD. Tailoring liquid crystalline lipid nanomaterials for controlled release of macromolecules. Int J Pharm. 2015;495(1):241–8.  https://doi.org/10.1016/j.ijpharm.2015.08.072.CrossRefPubMedGoogle Scholar
  52. 52.
    Rizwan SB, Hanley T, Boyd BJ, Rades T, Hook S. Liquid crystalline systems of phytantriol and glyceryl monooleate containing a hydrophilic protein: characterisation, swelling and release kinetics. J Pharm Sci. 2009;98(11):4191–204.  https://doi.org/10.1002/jps.21724.CrossRefPubMedGoogle Scholar
  53. 53.
    Gabr MM, Mortada SM, Sallam MA. Hexagonal liquid crystalline nanodispersions proven superiority for enhanced oral delivery of rosuvastatin: in vitro characterization and in vivo pharmacokinetic study. J Pharm Sci. 2017;106(10):3103–12.  https://doi.org/10.1016/j.xphs.2017.04.060.CrossRefPubMedGoogle Scholar
  54. 54.
    Elgindy NA, Mehanna MM, Mohyeldin SM. Self-assembled nano-architecture liquid crystalline particles as a promising carrier for progesterone transdermal delivery. Int J Pharm. 2016;501(1–2):167–79.  https://doi.org/10.1016/j.ijpharm.2016.01.049.CrossRefPubMedGoogle Scholar
  55. 55.
    Boyd BJ, Whittaker DV, Khoo SM, Davey G. Lyotropic liquid crystalline phases formed from glycerate surfactants as sustained release drug delivery systems. Int J Pharm. 2006;309(1–2):218–26.  https://doi.org/10.1016/j.ijpharm.2005.11.033.CrossRefPubMedGoogle Scholar
  56. 56.
    Unagolla JM, Jayasuriya AC. Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur J Pharm Sci. 2018;114:199–209.  https://doi.org/10.1016/j.ejps.2017.12.012.CrossRefPubMedGoogle Scholar
  57. 57.
    Gbureck U, Vorndran E, Barralet JE. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomater. 2008;4(5):1480–6.  https://doi.org/10.1016/j.actbio.2008.02.027.CrossRefPubMedGoogle Scholar
  58. 58.
    Moustafa MA, Elnaggar YSR, El-Refaie WM, Abdallah OY. Hyalugel-integrated liposomes as a novel ocular nanosized delivery system of fluconazole with promising prolonged effect. Int J Pharm. 2017;534(1–2):14–24.  https://doi.org/10.1016/j.ijpharm.2017.10.007.CrossRefPubMedGoogle Scholar
  59. 59.
    Mitra AK, Mikkelson TJ. Mechanism of transcorneal permeation of pilocarpine. J Pharm Sci. 1988;77:771–5.CrossRefGoogle Scholar
  60. 60.
    Erlemann G, Merkle R, Szappan O. Panthenol, phytantriol, vitamin E and vitamin A in cosmetics. Kozment. 1994:19–25.Google Scholar
  61. 61.
    Abd El-Rehim HA, Swilem AE, Klingner A, Hegazy e-SA, Hamed AA. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly(acrylic acid) nanogel dispersions prepared by γ radiation. Biomacromolecules. 2013;14(3):688–98.  https://doi.org/10.1021/bm301742m.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Xingqi Wang
    • 1
  • Yong Zhang
    • 1
  • Jie Huang
    • 1
  • Chunling Tian
    • 1
  • Mengqiu Xia
    • 1
  • Liu Liu
    • 1
  • Zhengguang Li
    • 1
  • Jiaojiao Cao
    • 1
  • Shuangying Gui
    • 1
    • 2
  • Xiaoqin Chu
    • 1
    • 2
    • 3
  1. 1.Department of Pharmaceutics, College of PharmacyAnhui University of Chinese MedicineHefeiChina
  2. 2.Institute of PharmaceuticsAnhui Academy of Chinese MedicineHefeiChina
  3. 3.Department of PharmacyAnhui University of Chinese MedicineHefeiChina

Personalised recommendations