AAPS PharmSciTech

, 20:16 | Cite as

Critical In Vitro Characterization Methods of Lipid-Based Formulations for Oral Delivery: a Comprehensive Review

  • Nitin Kumar Swarnakar
  • Natarajan Venkatesan
  • Guru BetageriEmail author
Review Article Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery
Part of the following topical collections:
  1. Theme: Lipid-Based Drug Delivery Strategies for Oral Drug Delivery


Lipids have been extensively used in formulations to enhance dissolution and bioavailability of poorly water-soluble as well as water-soluble drug molecules. The digestion of lipid-based formulations, in the presence of bile salts, phospholipids, and cholesterol, changes the lipid composition in vivo, resulting in the formation of different colloidal phases in the intestine. Therefore, in vitro characterization and evaluation of such formulations are critical in developing a successful formulation. This review covers comprehensive discussion on in vitro characterization techniques such as solubility, drug entrapment, thermal characterization, dissolution, and digestion of lipid-based formulations.


lipids solubility in vitro dissolution lipolysis 



The author (Nitin Kumar Swarnakar) expresses his sincere gratitude to Western University of Health Sciences, Pomona, California for awarding post-doctoral fellowship to carry out this project.

Compliance with Ethical Standards

Conflict of Interest

The authors report no conflict of interest.


  1. 1.
    Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017;43(11):1743–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Mishra DK, Shandilya R, Mishra PK. Lipid based nanocarriers: a translational perspective. Nanomedicine. 2018;14(7):2023–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Pouton CW, Porter CJ. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Deliv Rev. 2008;60(6):625–37.PubMedCrossRefGoogle Scholar
  4. 4.
    Maherani B, Wattraint O. Liposomal structure: a comparative study on light scattering and chromatography techniques. J Dispers Sci Technol. 2017;38(11):1633–9.CrossRefGoogle Scholar
  5. 5.
    Dong YD, Tchung E, Nowell C, Kaga S, Leong N, Mehta D, et al. Microfluidic preparation of drug-loaded PEGylated liposomes, and the impact of liposome size on tumour retention and penetration. J Liposome Res. 2017:1–9.Google Scholar
  6. 6.
    Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2).Google Scholar
  7. 7.
    Jain AK, Das M, Swarnakar NK, Jain S. Engineered PLGA nanoparticles: an emerging delivery tool in cancer therapeutics. Crit Rev Ther Drug Carrier Syst. 2011;28(1):1–45.PubMedCrossRefGoogle Scholar
  8. 8.
    Almgren M, Edwards K, Karlsson G. Cryo transmission electron microscopy of liposomes and related structures. Colloids Surf A Physicochem Eng Asp. 2000;174(1–2):3–21.CrossRefGoogle Scholar
  9. 9.
    Ruozi B, Belletti D, Tombesi A, Tosi G, Bondioli L, Forni F, et al. AFM, ESEM, TEM, and CLSM in liposomal characterization: a comparative study. Int J Nanomedicine. 2011;6:557–63.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Jain S, Bhankur N, Swarnakar NK, Thanki K. Phytantriol based "stealth" lyotropic liquid crystalline nanoparticles for improved antitumor efficacy and reduced toxicity of docetaxel. Pharm Res. 2015;32(10):3282–92.PubMedCrossRefGoogle Scholar
  11. 11.
    Jain S, Chaudhari BH, Swarnakar NK. Preparation and characterization of niosomal gel for iontophoresis mediated transdermal delivery of isosorbide dinitrate. Drug Deliv Transl Res. 2011;1(4):309–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Jain S, Heeralal B, Swami R, Swarnakar NK, Kushwah V. Improved oral bioavailability, therapeutic efficacy, and reduced toxicity of tamoxifen-loaded liquid crystalline nanoparticles. AAPS PharmSciTech. 2018;19(1):460–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Fraunhofer W, Winter G. The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm. 2004;58(2):369–83.PubMedCrossRefGoogle Scholar
  14. 14.
    Cölfen H, Antonietti M. Field-flow fractionation techniques for polymer and colloid analysis. New Developments in Polymer Analytics I. Berlin: Springer; 2000. p. 67–187.Google Scholar
  15. 15.
    Henriquez RR, Ito T, Sun L, Crooks RM. The resurgence of Coulter counting for analyzing nanoscale objects. Analyst. 2004;129(6):478–82.PubMedCrossRefGoogle Scholar
  16. 16.
    de Vrij J, Maas SL, van Nispen M, Sena-Esteves M, Limpens RW, Koster AJ, et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (London). 2013;8(9):1443–58.CrossRefGoogle Scholar
  17. 17.
    Yang L, Broom MF, Tucker IG. Characterization of a nanoparticulate drug delivery system using scanning ion occlusion sensing. Pharm Res. 2012;29(9):2578–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Chauhan H, Mohapatra S, Munt DJ, Chandratre S, Dash A. Physical-chemical characterization and formulation considerations for solid lipid nanoparticles. AAPS PharmSciTech. 2016;17(3):640–51.PubMedCrossRefGoogle Scholar
  19. 19.
    Swarnakar NK, Jain V, Dubey V, Mishra D, Jain NK. Enhanced oromucosal delivery of progesterone via hexosomes. Pharm Res. 2007;24(12):2223–30.PubMedCrossRefGoogle Scholar
  20. 20.
    Swarnakar NK, Thanki K, Jain S. Lyotropic liquid crystalline nanoparticles of CoQ10: implication of lipase digestibility on oral bioavailability, in vivo antioxidant activity, and in vitro-in vivo relationships. Mol Pharm. 2014;11(5):1435–49.PubMedCrossRefGoogle Scholar
  21. 21.
    Swarnakar NK, Thanki K, Jain S. Bicontinuous cubic liquid crystalline nanoparticles for oral delivery of doxorubicin: implications on bioavailability, therapeutic efficacy, and cardiotoxicity. Pharm Res. 2014;31(5):1219–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116(18):11128–80.PubMedCrossRefGoogle Scholar
  23. 23.
    Pouton CW. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm. 1985;27(2–3):335–48.CrossRefGoogle Scholar
  24. 24.
    Wakerly MG, Pouton, C.W. , Meakin, BJ , Morton, FS. Self-emulsification of vegetable oil-nonionic surfactant mixtures—a proposed mechanism of action 311: ACS Symposium Series. 1986. p 242–55.Google Scholar
  25. 25.
    Andrysek T. Impact of physical properties of formulations on bioavailability of active substance: current and novel drugs with cyclosporine. Mol Immunol. 2003;39(17–18):1061–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Mueller EA, Kovarik JM, van Bree JB, Tetzloff W, Grevel J, Kutz K. Improved dose linearity of cyclosporine pharmacokinetics from a microemulsion formulation. Pharm Res. 1994;11(2):301–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Ritschel WA. Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin Transpl. 1996;10(4):364–73.Google Scholar
  28. 28.
    Trull AK, Tan KK, Uttridge J, Bauer T, Alexander GJ, Jamieson NV. Cyclosporin absorption from microemulsion formulation in liver transplant recipient. Lancet. 1993;341(8842):433.PubMedCrossRefGoogle Scholar
  29. 29.
    Kovarik JM, Mueller EA, van Bree JB, Fluckiger SS, Lange H, Schmidt B, et al. Cyclosporine pharmacokinetics and variability from a microemulsion formulation—a multicenter investigation in kidney transplant patients. Transplantation. 1994;58(6):658–63.PubMedCrossRefGoogle Scholar
  30. 30.
    Kahan BD, Dunn J, Fitts C, Van Buren D, Wombolt D, Pollak R, et al. Reduced inter- and intrasubject variability in cyclosporine pharmacokinetics in renal transplant recipients treated with a microemulsion formulation in conjunction with fasting, low-fat meals, or high-fat meals. Transplantation. 1995;59(4):505–11.PubMedCrossRefGoogle Scholar
  31. 31.
    Trull AK, Tan KK, Tan L, Alexander GJ, Jamieson NV. Absorption of cyclosporin from conventional and new microemulsion oral formulations in liver transplant recipients with external biliary diversion. Br J Clin Pharmacol. 1995;39(6):627–31.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Cuine JF, McEvoy CL, Charman WN, Pouton CW, Edwards GA, Benameur H, et al. Evaluation of the impact of surfactant digestion on the bioavailability of danazol after oral administration of lipidic self-emulsifying formulations to dogs. J Pharm Sci. 2008;97(2):995–1012.PubMedCrossRefGoogle Scholar
  33. 33.
    Chiu YY, Higaki K, Neudeck BL, Barnett JL, Welage LS, Amidon GL. Human jejunal permeability of cyclosporin A: influence of surfactants on P-glycoprotein efflux in Caco-2 cells. Pharm Res. 2003;20(5):749–56.PubMedCrossRefGoogle Scholar
  34. 34.
    Larsen A, Holm R, Pedersen ML, Mullertz A. Lipid-based formulations for danazol containing a digestible surfactant, Labrafil M2125CS: in vivo bioavailability and dynamic in vitro lipolysis. Pharm Res. 2008;25(12):2769–77.PubMedCrossRefGoogle Scholar
  35. 35.
    Kaukonen AM, Boyd BJ, Charman WN, Porter CJ. Drug solubilization behavior during in vitro digestion of suspension formulations of poorly water-soluble drugs in triglyceride lipids. Pharm Res. 2004;21(2):254–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Gao P, Rush BD, Pfund WP, Huang T, Bauer JM, Morozowich W, et al. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci. 2003;92(12):2386–98.PubMedCrossRefGoogle Scholar
  37. 37.
    Gao P, Guyton ME, Huang T, Bauer JM, Stefanski KJ, Lu Q. Enhanced oral bioavailability of a poorly water soluble drug PNU-91325 by supersaturatable formulations. Drug Dev Ind Pharm. 2004;30(2):221–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv. 2006;3(1):97–110.PubMedCrossRefGoogle Scholar
  39. 39.
    Price DJ, Ditzinger F, Koehl NJ, Jankovic S, Tsakiridou G, Nair A, et al. Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations—a PEARRL review. J Pharm Pharmacol. 2018.Google Scholar
  40. 40.
    Dipali SR, Kulkarni SB, Betageri GV. Comparative study of separation of non-encapsulated drug from unilamellar liposomes by various methods. J Pharm Pharmacol. 1996;48(11):1112–25.PubMedCrossRefGoogle Scholar
  41. 41.
    Muller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(Suppl 1):S131–55.PubMedCrossRefGoogle Scholar
  42. 42.
    Souto EB, Mehnert W, Muller RH. Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. J Microencapsul. 2006;23(4):417–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Sassene PJ, Knopp MM, Hesselkilde JZ, Koradia V, Larsen A, Rades T, et al. Precipitation of a poorly soluble model drug during in vitro lipolysis: characterization and dissolution of the precipitate. J Pharm Sci. 2010;99(12):4982–91.PubMedCrossRefGoogle Scholar
  44. 44.
    Sassene PJ, Michaelsen MH, Mosgaard MD, Jensen MK, Van Den Broek E, Wasan KM, et al. In vivo precipitation of poorly soluble drugs from lipid-based drug delivery systems. Mol Pharm. 2016;13(10):3417–26.PubMedCrossRefGoogle Scholar
  45. 45.
    Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X, et al. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci. 2015;10(2):81–98.CrossRefGoogle Scholar
  46. 46.
    Ali S, Minchey S, Janoff A, Mayhew E. A differential scanning calorimetry study of phosphocholines mixed with paclitaxel and its bromoacylated taxanes. Biophys J. 2000;78(1):246–56.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Galia E, Nicolaides E, Horter D, Lobenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.PubMedCrossRefGoogle Scholar
  48. 48.
    Nicolaides E, Galia E, Efthymiopoulos C, Dressman JB, Reppas C. Forecasting the in vivo performance of four low solubility drugs from their in vitro dissolution data. Pharm Res. 1999;16(12):1876–82.PubMedCrossRefGoogle Scholar
  49. 49.
    Arndt M, Chokshi H, Tang K, Parrott NJ, Reppas C, Dressman JB. Dissolution media simulating the proximal canine gastrointestinal tract in the fasted state. Eur J Pharm Biopharm. 2013;84(3):633–41.PubMedCrossRefGoogle Scholar
  50. 50.
    Jantratid E, Janssen N, Reppas C, Dressman JB. Dissolution media simulating conditions in the proximal human gastrointestinal tract: an update. Pharm Res. 2008;25(7):1663–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Yang SG. Biowaiver extension potential and IVIVC for BCS class II drugs by formulation design: case study for cyclosporine self-microemulsifying formulation. Arch Pharm Res. 2010;33(11):1835–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Dai WG, Dong LC, Shi X, Nguyen J, Evans J, Xu Y, et al. Evaluation of drug precipitation of solubility-enhancing liquid formulations using milligram quantities of a new molecular entity (NME). J Pharm Sci. 2007;96(11):2957–69.PubMedCrossRefGoogle Scholar
  53. 53.
    Rossi RC, Dias CL, Donato EM, Martins LA, Bergold AM, Froehlich PE. Development and validation of dissolution test for ritonavir soft gelatin capsules based on in vivo data. Int J Pharm. 2007;338(1–2):119–24.PubMedCrossRefGoogle Scholar
  54. 54.
    Donato EM, Martins LA, Froehlich PE, Bergold AM. Development and validation of dissolution test for lopinavir, a poorly water-soluble drug, in soft gel capsules, based on in vivo data. J Pharm Biomed Anal. 2008;47(3):547–52.PubMedCrossRefGoogle Scholar
  55. 55.
    Nishimura H, Hayashi C, Aiba T, Okamoto I, Miyamoto Y, Nakade S, et al. Application of the correlation of in vitro dissolution behavior and in vivo plasma concentration profile (IVIVC) for soft-gel capsules—a pointless pursuit? Biol Pharm Bull. 2007;30(11):2221–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Fei Y, Kostewicz ES, Sheu MT, Dressman JB. Analysis of the enhanced oral bioavailability of fenofibrate lipid formulations in fasted humans using an in vitro-in silico-in vivo approach. Eur J Pharm Biopharm. 2013;85(3 Pt B):1274–84.PubMedCrossRefGoogle Scholar
  57. 57.
    Pestieau A, Lebrun S, Cahay B, Brouwers A, Streel B, Cardot JM, et al. Evaluation of different in vitro dissolution tests based on level A in vitro-in vivo correlations for fenofibrate self-emulsifying lipid-based formulations. Eur J Pharm Biopharm. 2017;112:18–29.PubMedCrossRefGoogle Scholar
  58. 58.
    Pestieau A, Krier F, Brouwers A, Streel B, Evrard B. Selection of a discriminant and biorelevant in vitro dissolution test for the development of fenofibrate self-emulsifying lipid-based formulations. Eur J Pharm Sci. 2016;92:212–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Reymond JP, Sucker H. In vitro model for ciclosporin intestinal absorption in lipid vehicles. Pharm Res. 1988;5(10):673–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Alvarez FJ, Stella VJ. The role of calcium ions and bile salts on the pancreatic lipase-catalyzed hydrolysis of triglyceride emulsions stabilized with lecithin. Pharm Res. 1989;6(6):449–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Alvarez FJ, Stella VJ. Pancreatic lipase-catalyzed hydrolysis of esters of hydroxymethyl phenytoin dissolved in various metabolizable vehicles, dispersed in micellar systems, and in aqueous suspensions. Pharm Res. 1989;6(7):555–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Christensen JO, Schultz K, Mollgaard B, Kristensen HG, Mullertz A. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. Eur J Pharm Sci. 2004;23(3):287–96.PubMedCrossRefGoogle Scholar
  63. 63.
    Porter CJ, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm Res. 2004;21(8):1405–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Dahan A, Hoffman A. Use of a dynamic in vitro lipolysis model to rationalize oral formulation development for poor water soluble drugs: correlation with in vivo data and the relationship to intra-enterocyte processes in rats. Pharm Res. 2006;23(9):2165–74.PubMedCrossRefGoogle Scholar
  65. 65.
    Thomas N, Holm R, Rades T, Mullertz A. Characterising lipid lipolysis and its implication in lipid-based formulation development. AAPS J. 2012;14(4):860–71.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Fernandez S, Chevrier S, Ritter N, Mahler B, Demarne F, Carriere F, et al. In vitro gastrointestinal lipolysis of four formulations of piroxicam and cinnarizine with the self emulsifying excipients Labrasol and Gelucire 44/14. Pharm Res. 2009;26(8):1901–10.PubMedCrossRefGoogle Scholar
  67. 67.
    Porter CJ, Kaukonen AM, Taillardat-Bertschinger A, Boyd BJ, O'Connor JM, Edwards GA, et al. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: studies with halofantrine. J Pharm Sci. 2004;93(5):1110–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Fuchs A, Dressman JB. Composition and physicochemical properties of fasted-state human duodenal and jejunal fluid: a critical evaluation of the available data. J Pharm Sci. 2014;103(11):3398–411.PubMedCrossRefGoogle Scholar
  69. 69.
    Rowland RN, Woodley JF. The stability of liposomes in vitro to pH, bile salts and pancreatic lipase. Biochim Biophys Acta. 1980;620(3):400–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Kossena GA, Charman WN, Boyd BJ, Dunstan DE, Porter CJ. Probing drug solubilization patterns in the gastrointestinal tract after administration of lipid-based delivery systems: a phase diagram approach. J Pharm Sci. 2004;93(2):332–48.PubMedCrossRefGoogle Scholar
  71. 71.
    Caspary WF. Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr. 1992;55(1 Suppl):299S–308S.PubMedCrossRefGoogle Scholar
  72. 72.
    Liu W, Ye A, Liu W, Liu C, Han J, Singh H. Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem. 2015;175:16–24.PubMedCrossRefGoogle Scholar
  73. 73.
    Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.PubMedCrossRefGoogle Scholar
  74. 74.
    Wiedmann TS, Liang W, Kamel L. Solubilization of drugs by physiological mixtures of bile salts. Pharm Res. 2002;19(8):1203–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499.PubMedCrossRefGoogle Scholar
  76. 76.
    Do TT, Van Speybroeck M, Mols R, Annaert P, Martens J, Van Humbeeck J, et al. The conflict between in vitro release studies in human biorelevant media and the in vivo exposure in rats of the lipophilic compound fenofibrate. Int J Pharm. 2011;414(1–2):118–24.PubMedCrossRefGoogle Scholar
  77. 77.
    Williams HD, Sassene P, Kleberg K, Calderone M, Igonin A, Jule E, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations. Pharm Res. 2013;30(12):3059–76.PubMedCrossRefGoogle Scholar
  78. 78.
    Williams HD, Anby MU, Sassene P, Kleberg K, Bakala-N'Goma JC, Calderone M, et al. Toward the establishment of standardized in vitro tests for lipid-based formulations. 2. The effect of bile salt concentration and drug loading on the performance of type I, II, IIIA, IIIB, and IV formulations during in vitro digestion. Mol Pharm. 2012;9(11):3286–300.PubMedCrossRefGoogle Scholar
  79. 79.
    Thomas N, Richter K, Pedersen TB, Holm R, Mullertz A, Rades T. In vitro lipolysis data does not adequately predict the in vivo performance of lipid-based drug delivery systems containing fenofibrate. AAPS J. 2014;16(3):539–49.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Nitin Kumar Swarnakar
    • 1
    • 2
  • Natarajan Venkatesan
    • 1
    • 2
  • Guru Betageri
    • 1
    Email author
  1. 1.College of PharmacyWestern University of Health SciencesPomonaUSA
  2. 2.TesoRx Centre of Excellence at Western University of Health SciencesPomonaUSA

Personalised recommendations