Advertisement

AAPS PharmSciTech

, 20:27 | Cite as

Influence of Dissolution Vessel Geometry and Dissolution Medium on In Vitro Dissolution Behaviour of Triamterene-Coated Model Stents in Different Test Setups

  • Katharina Pruessmann
  • Monika Wentzlaff
  • Ruprecht Schilling
  • Anne SeidlitzEmail author
Research Article Theme: Advancements in Dissolution Testing of Oral and Non-Oral Formulations
  • 103 Downloads
Part of the following topical collections:
  1. Theme: Advancements in Dissolution Testing of Oral and Non-Oral Formulations

Abstract

The aim of this study was to investigate if the geometry of the dissolution vessel, the dissolution medium volume and composition might contribute to the variation in drug release from drug-eluting stents (DES) in different test setups, which has been observed in previous in vitro studies. Therefore, DES containing triamterene as model substance were produced via fluidised-bed technology. Dissolution testing was carried out using different incubation setups, the reciprocating holder (USP Apparatus 7) and two flow-through methods, a method similar to the USP Apparatus 4 (FTC) and the vessel-simulating flow-through cell (vFTC) equipped with a hydrogel as a second compartment simulating the blood vessel wall. The results indicate that dissolution vessel geometry and medium volume had no influence on the release behaviour and only the flow-through cell methods yielded a lower dissolution rate than the incubation setups (80.6 ± 2.0% released in the FTC after 14 days compared to > 90% for all incubation setups). The composition of the hydrogel used in the vFTC also affected the dissolution rate (53.9 ± 4.5% within 14 days with a hydrogel based on phosphate-buffered saline compared to 78.2 ± 1.2% obtained with a hydrogel based on water) possibly due to different solubility of triamterene in the release media as well as interactions between the coating polymer and the release medium. Hence, the introduction of a hydrogel as a second compartment might lead to a more biorelevant test setup.

KEY WORDS

drug-eluting stent in vitro dissolution testing vessel-simulating flow-through cell fluidised-bed technology release medium 

Notes

Acknowledgements

The authors thank Agilent Technologies, Inc., USA, and Prof. Sandra Klein for the supply of the 400-DS reciprocating holder apparatus and Katharina Tietz for assistance with the experiments. Furthermore, the authors thank Biotronik SE & Co. KG and Evonik Nutrition and Care GmbH for providing BMS and Eudragit® RS 30 D. The expert technical assistance of Thomas Brand, Sabine Ristow, Johann Schopplich and David Heldner is gratefully acknowledged. The authors also thank the staff of the technical workshop of the Faculty of Mathematics and Natural Sciences, University of Greifswald for the construction of the flow-through cells.

Funding Information

This work was funded by the Federal Ministry of Education and Research (BMBF) within RESPONSE.

References

  1. 1.
    Cutlip DE, Chauhan MS, Baim DS, Ho KKL, Popma JJ, Carrozza JP, et al. Clinical restenosis after coronary stenting: perspectives from multicenter clinical trials. J Am Coll Cardiol. 2002;40(12):2082–9.CrossRefGoogle Scholar
  2. 2.
    Stone GW, Ellis SG, Cox DA, Hermiller J, O’Shaughnessy C, Mann JT, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med. 2004;350(3):221–31.CrossRefGoogle Scholar
  3. 3.
    Morice M-C, Serruys PW, Sousa JE, Fajadet J, Ban Hayashi E, Perin M, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med. 2002;346(23):1773–80.CrossRefGoogle Scholar
  4. 4.
    Moses JW, Leon MB, Popma JJ, Fitzgerald PJ, Holmes DR, O’Shaughnessy C, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med. 2003;349(14):1315–23.CrossRefGoogle Scholar
  5. 5.
    Serruys PW, Ong ATL, Piek JJ, Neumann F-J, van der Giessen WJ, Wiemer M, et al. A randomized comparison of a durable polymer everolimus-eluting stent with a bare metal coronary stent: the SPIRIT first trial. EuroIntervention. 2005;1(1):58–65.PubMedGoogle Scholar
  6. 6.
    Grube E, Sonoda S, Ikeno F, Honda Y, Kar S, Chan C, et al. Six- and twelve-month results from first human experience using everolimus-eluting stents with bioabsorbable polymer. Circulation. 2004;109(18):2168–71.CrossRefGoogle Scholar
  7. 7.
    Grube E, Buellesfeld L. BioMatrix® Biolimus A9®-eluting coronary stent: a next-generation drug-eluting stent for coronary artery disease. Expert Rev Med Devices. 2006;3(6):731–41.CrossRefGoogle Scholar
  8. 8.
    Serruys PW, Ormiston JA, Sianos G, Sousa JE, Grube E, Den Heijer P, et al. Actinomycin-eluting stent for coronary revascularization: a randomized feasibility and safety study: the ACTION trial. J Am Coll Cardiol. 2004;44(7):1363–7.PubMedGoogle Scholar
  9. 9.
    Radke P, Weber C, Kaiser A, Schober A, Hoffmann R. Dexamethasone and restenosis after coronary stent implantation: new indication for an old drug? Curr Pharm Des. 2004;10(4):349–55.CrossRefGoogle Scholar
  10. 10.
    Aggarwal RK, Ireland DC, Azrin MA, Ezekowitz MD, de Bono DP, Gershlick AH. Antithrombotic potential of polymer-coated stents eluting platelet glycoprotein IIb/IIIa receptor antibody. Circulation. 1996;94(12):3311 LP–3317.CrossRefGoogle Scholar
  11. 11.
    Nakazawa G, Granada JF, Alviar CL, Tellez A, Kaluza GL, Guilhermier MY, et al. Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization. JACC Cardiovasc Interv. 2010;3(1):68–75.CrossRefGoogle Scholar
  12. 12.
    Gallo A, Mani G. A stent for co-delivering paclitaxel and nitric oxide from abluminal and luminal surfaces: preparation, surface characterization, and in vitro drug release studies. Appl Surf Sci. 2013;279:216–32.CrossRefGoogle Scholar
  13. 13.
    Petersen S, Hussner J, Reske T, Grabow N, Senz V, Begunk R, et al. In vitro study of dual drug-eluting stents with locally focused sirolimus and atorvastatin release. J Mater Sci Mater Med. 2013;24(11):2589–600.CrossRefGoogle Scholar
  14. 14.
    Huang Y, Venkatraman SS, Boey FYC, Lahti EM, Umashankar PR, Mohanty M, et al. In vitro and in vivo performance of a dual drug-eluting stent (DDES). Biomaterials. 2010;31(15):4382–91.CrossRefGoogle Scholar
  15. 15.
    Martin DM, Boyle FJ. Drug-eluting stents for coronary artery disease: a review. Med Eng Phys. 2011;33(2):148–63.CrossRefGoogle Scholar
  16. 16.
    Chen W, Habraken TCJ, Hennink WE, Kok RJ. Polymer-free drug-eluting stents: an overview of coating strategies and comparison with polymer-coated drug-eluting stents. Bioconjug Chem. 2015;26(7):1277–88.CrossRefGoogle Scholar
  17. 17.
    Ranade SV, Miller KM, Richard RE, Chan AK, Allen MJ, Helmus MN. Physical characterization of controlled release of paclitaxel from the TAXUS™ Express2™ drug-eluting stent. J Biomed Mater Res A. 2004;71(4):625–34.CrossRefGoogle Scholar
  18. 18.
    Sternberg K, Kramer S, Nischan C, Grabow N, Langer T, Hennighausen G, et al. In vitro study of drug-eluting stent coatings based on poly(L-lactide) incorporating cyclosporine A—drug release, polymer degradation and mechanical integrity. J Mater Sci Mater Med. 2007;18(7):1423–32.CrossRefGoogle Scholar
  19. 19.
    Ma X, Oyamada S, Gao F, Wu T, Robich MP, Wu H, et al. Paclitaxel/sirolimus combination coated drug-eluting stent: in vitro and in vivo drug release studies. J Pharm Biomed Anal. 2011;54(4):807–11.CrossRefGoogle Scholar
  20. 20.
    Seidlitz A, Schick W, Reske T, Senz V, Grabow N, Petersen S, et al. In vitro study of sirolimus release from a drug-eluting stent: comparison of the release profiles obtained using different test setups. Eur J Pharm Biopharm. 2015;93:328–38.CrossRefGoogle Scholar
  21. 21.
    Kamberi M, Nayak S, Myo-Min K, Carter TP, Hancock L, Feder D. A novel accelerated in vitro release method for biodegradable coating of drug eluting stents: insight to the drug release mechanisms. Eur J Pharm Sci. 2009;37(3–4):217–22.CrossRefGoogle Scholar
  22. 22.
    Merciadez M, Alquier L, Mehta R, Patel A, Wang A. A novel method for the elution of sirolumus (rapamycin) in drug-eluting stents. Dissolution Technol. 2011;18(4):37–42.CrossRefGoogle Scholar
  23. 23.
    Neubert A, Sternberg K, Nagel S, Harder C, Schmitz KP, Kroemer HK, et al. Development of a vessel-simulating flow-through cell method for the in vitro evaluation of release and distribution from drug-eluting stents. J Control Release. 2008;130(1):2–8.CrossRefGoogle Scholar
  24. 24.
    Nelson FC, Stachel SJ, Eng CP, Sehgal SN. Manipulation of the C(22)-C(27) region of rapamycin: stability issues and biological implications. Bioorg Med Chem Lett. 1999;9(2):295–300.CrossRefGoogle Scholar
  25. 25.
    Council of Europe (ed.). European pharmacopoeia 9th edition, 4.1.3 buffer solutions. 2019.Google Scholar
  26. 26.
    Wentzlaff M, Seidlitz A, Senz V, Grabow N, Harder C, Sternberg K, et al. Investigating the applicability of fluidized-bed technology for high-throughput coating of stents. Biomed Tech. 2013;58(1):24–5.Google Scholar
  27. 27.
    Higuchi T, Shih F-ML, Kimura T, Rytting JH. Solubility determination of barely aqueous-soluble organic solids. J Pharm Sci. 1979;68(10):1267–72.CrossRefGoogle Scholar
  28. 28.
    Domańska U, Pobudkowska A, Pelczarska A, Ukowski Ł. Modelling, solubility and pKa of five sparingly soluble drugs. Int J Pharm. 2011;403(1–2):115–22.CrossRefGoogle Scholar
  29. 29.
    Setschenow J. Über die Konstitution der Salzlösungen auf Grund ihres Verhaltens zu Kohlensäure. Z Phys Chem. 1889;4(1):117–25.CrossRefGoogle Scholar
  30. 30.
    United States Pharmacopeial Convention Inc. Council of Experts (ed.). United States Pharmacopeia and National Formulary USP 41-NF 36 <711> Dissolution.Google Scholar
  31. 31.
    Di Mario C, Meneveau N, Gil R, De Jaegere P, De Feyter PJ, Slager CJ, et al. Maximal blood flow velocity in severe coronary stenoses measured with a Doppler guidewire. Am J Cardiol. 1993;71:54–61.CrossRefGoogle Scholar
  32. 32.
    Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci. 1961;50(10):874–5.CrossRefGoogle Scholar
  33. 33.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.CrossRefGoogle Scholar
  34. 34.
    Ritger PL, Peppas NA. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release. 1987;5(1):23–36.CrossRefGoogle Scholar
  35. 35.
    Basalus MWZ, Tandjung K, Van Westen T, Sen H, Van Der Jagt PKN, Grijpma DW, et al. Scanning electron microscopic assessment of coating irregularities and their precursors in unexpanded durable polymer-based drug-eluting stents. Catheter Cardiovasc Interv. 2012;79(4):644–53.CrossRefGoogle Scholar
  36. 36.
    Medina JR, Salazar DK, Hurtado M, Cortés AR, Domínguez-Ramírez AM. Comparative in vitro dissolution study of carbamazepine immediate-release products using the USP paddles method and the flow-through cell system. Saudi Pharm J. 2014;22(2):141–7.CrossRefGoogle Scholar
  37. 37.
    Hu J, Kyad A, Ku V, Zhou P, Cauchon N. A comparison of dissolution testing on lipid soft gelatin capsules using USP apparatus 2 and apparatus 4. Dissolution Technol. 2005;12(2):6–9.CrossRefGoogle Scholar
  38. 38.
    Hurtado y de la Peña M, Vargas Alvarado Y, Domínguez-Ramírez AM, Cortés Arroyo AR. Comparison of dissolution profiles for albendazole tablets using USP apparatus 2 and 4. Drug Dev Ind Pharm. 2003;29(7):777–84.CrossRefGoogle Scholar
  39. 39.
    Yu X, Yu R. Setschenow constant prediction based on the IEF-PCM calculations. Ind Eng Chem Res. 2013;52(32):11182–8.CrossRefGoogle Scholar
  40. 40.
    Ni N, El-Sayed MM, Sanghvi T, Yalkowsky SH. Estimation of the effect of NaCl on the solubility of organic compounds in aqueous solutions. J Pharm Sci. 2000;89(12):1620–5.CrossRefGoogle Scholar
  41. 41.
    Miyazaki S, Oshiba M, Nadai T. Unusual solubility and dissolution behavior of pharmaceutical hydrochloride salts in chloride-containing media. Int J Pharm. 1980;6:77–85.CrossRefGoogle Scholar
  42. 42.
    Dittert LW, Higuchi T, Reese DR. Phase solubility technique in studying the formation of complex salts of triamterene. J Pharm Sci. 1964;53(11):1325–8.CrossRefGoogle Scholar
  43. 43.
    Miyazaki S, Inoue H, Nadai T, Arita T, Nakano M. Solubility characteristics of weak bases and their hydrochloride salts in hydrochloric acid solutions. Chem Pharm Bull. 1979;27(6):1441–7.CrossRefGoogle Scholar
  44. 44.
    Pruitt AW, Mcnay JL, Dayton PG. Transfer characteristics of triamterene and its analogs. Drug Metab Dispos. 1975;3(1):30–41.PubMedGoogle Scholar
  45. 45.
    Serajuddin ATM, Mufson D. pH-solubility profiles of organic bases and their hydrochloride salts. Vol. 2, Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists. 1985. p. 65–8.Google Scholar
  46. 46.
    Watanabe E, Takahashi M, Hayashi M. A possibility to predict the absorbability of poorly water-soluble drugs in humans based on rat intestinal permeability assessed by an in vitro chamber method. Eur J Pharm Biopharm. 2004;58(3):659–65.CrossRefGoogle Scholar
  47. 47.
    Wagner KG, Gruetzmann R. Anion-induced water flux as drug release mechanism through cationic Eudragit RS 30D film coatings. AAPS J. 2005;7(3):E668–77.CrossRefGoogle Scholar
  48. 48.
    Wagner KG, McGinity JW. Influence of chloride ion exchange on the permeability and drug release of Eudragit RS 30 D films. J Control Release. 2002;82(2–3):385–97.CrossRefGoogle Scholar
  49. 49.
    Bodmeier R, Guo X, Sarabia RE, Skultety PF. The influence of buffer species and strength on diltiazem HCl release from beads coated with the aqueous cationic polymer dispersions, Eudragit RS, RL 30D. Pharm Res. 1996;13:52–6.CrossRefGoogle Scholar
  50. 50.
    Simamora P, Alvarez JM, Yalkowsky SH. Solubilization of rapamycin. Int J Pharm. 2001;213(1–2):25–9.CrossRefGoogle Scholar
  51. 51.
    Semmling B, Nagel S, Sternberg K, Weitschies W, Seidlitz A. Development of hydrophobized alginate hydrogels for the vessel-simulating flow-through cell and their usage for biorelevant drug-eluting stent testing. AAPS PharmSciTech. 2013;14(3):1209–18.CrossRefGoogle Scholar
  52. 52.
    Abizaid A, Costa JR. New drug-eluting stents an overview on biodegradable and polymer-free next-generation stent systems. Circ Cardiovasc Interv. 2010;3(4):384–93.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Katharina Pruessmann
    • 1
  • Monika Wentzlaff
    • 1
  • Ruprecht Schilling
    • 1
  • Anne Seidlitz
    • 1
    Email author
  1. 1.Biopharmaceutics and Pharmaceutical Technology, Centre of Drug Absorption and Transport, Institute of PharmacyUniversity of GreifswaldGreifswaldGermany

Personalised recommendations