AAPS PharmSciTech

, 20:51 | Cite as

Paclitaxel Encapsulation into Dual-Functionalized Multi-Walled Carbon Nanotubes

  • Vishakha Rathod
  • Rahul Tripathi
  • Parth Joshi
  • Prafulla K. Jha
  • Pratap Bahadur
  • Sanjay TiwariEmail author
Research Article


This work reports the synthesis of multi-walled carbon nanotubes (CNTs) from xylene/ferrocene using catalytic chemical vapor deposition technique. Following characterization using transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and Raman spectroscopy, CNT surface was dual-functionalized using ethylenediamine and phenylboronic acid groups. Average diameter of CNTs was calculated to be 16.5 nm. EDX spectra confirmed the existence of carbonaceous deposits on the tube’s surface. Scattered electron diffraction and X-ray peak broadening calculations showed consistent inter-planer distance of the grown CNTs. Chemical functionalization, confirmed from FT-IR and Raman spectra, showed an enhanced dispersibility of CNTs in water. We describe the changes in the first- and second-order regions of the Raman spectra following the encapsulation of an anti-cancer drug, paclitaxel (PLX), into the free volume of functionalized CNTs. High PLX loading, achieved through its non-covalent π–π stacking within the CNT interior, is confirmed through the blue-shifted, softened G band in the Raman spectrum. While not addressed here, we will exploit this dual functionalization tactic to elaborate the relative role of attached moieties in the affinity interaction of CNTs with extra-cellular sialic acid, a biological target showing metastatic stage-dependent over-expression in colon cancer cells.


carbon nanotubes drug targeting aqueous dispersibility paclitaxel non-covalent interaction 



carbon nanotubes


chemical vapor deposition




sialic acid


transmission electron microscopy


energy-dispersive X-ray spectroscopy


ethylenediamine, selected-area electron diffraction




phenylboronic acid


di-tert-butyl dicarbonate


1-ethyl-3-(3-dimethylaminopropyl) carbodiimide


N-hydroxy succinimide


X-ray diffraction


high-performance liquid chromatography


dynamic light scattering


room temperature



The project was supported by grants received from the Science & Engineering Research Board (SERB), New Delhi (# ECR/2017/000903) and the B.U. Patel Research Promotion Scheme (# UTU-RPS/2017/88), India. The authors acknowledge the support of Professor N.P. Lalla (UGC-DAE CSR, Indore) for the TEM experiments.

Compliance with Ethical Standards

Conflict of Interest

Authors report no conflict of interest.

Supplementary material

12249_2018_1218_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1411 kb)


  1. 1.
    Eder D. Carbon nanotube-inorganic hybrids. Chem Rev. 2010;110:1348–85.PubMedGoogle Scholar
  2. 2.
    Battigelli A, Menard-Moyon C, Da Ros T, Prato M, Bianco A. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv Drug Deliv Rev. 2013;65:1899–920.PubMedGoogle Scholar
  3. 3.
    Liang C, Wang B, Chen J, Yong Q, Huang Y, Liao B. Dispersion of multi-walled carbon nanotubes by polymers with carbazole pendants. J Phys Chem B. 2017;121:8408–16.PubMedGoogle Scholar
  4. 4.
    Sun YP, Fu K, Lin Y, Huang W. Functionalized carbon nanotubes: properties and applications. Acc Chem Res. 2002;35:1096–104.PubMedGoogle Scholar
  5. 5.
    Bianco A, Kostarelos K, Prato M. Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb). 2011;47:10182–8.Google Scholar
  6. 6.
    Bussy C, Hadad C, Prato M, Bianco A, Kostarelos K. Intracellular degradation of chemically functionalized carbon nanotubes using a long-term primary microglial culture model. Nanoscale. 2016;8:590–601.PubMedGoogle Scholar
  7. 7.
    Geng J, Kim K, Zhang J, Escalada A, Tunuguntla R, Comolli LR, et al. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes. Nature. 2014;514:612–5.PubMedGoogle Scholar
  8. 8.
    Datir SR, Das M, Singh RP, Jain S. Hyaluronate tethered, “smart” multiwalled carbon nanotubes for tumor-targeted delivery of doxorubicin. Bioconjug Chem. 2012;23:2201–13.PubMedGoogle Scholar
  9. 9.
    Sahoo AK, Kanchi S, Mandal T, Dasgupta C, Maiti PK. Translocation of bioactive molecules through carbon nanotubes embedded in the lipid membrane. ACS Appl Mater Interfaces. 2018;10:6168–79.PubMedGoogle Scholar
  10. 10.
    Wu H, Liu G, Zhuang Y, Wu D, Zhang H, Yang H, et al. The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybrid MRI contrast agents. Biomaterials. 2011;32:4867–76.PubMedGoogle Scholar
  11. 11.
    Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153:198–205.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Nguyen QT, Olson ES, Aguilera TA, Jiang T, Scadeng M, Ellies LG, et al. Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival. Proc Natl Acad Sci. 2010;107:4317–22.PubMedGoogle Scholar
  13. 13.
    Tiwari S, Tirosh B, Rubinstein A. Increasing the affinity of cationized polyacrylamide-paclitaxel nanoparticles towards colon cancer cells by a surface recognition peptide. Int J Pharm. 2017;531:281–91.PubMedGoogle Scholar
  14. 14.
    Wang W, Yin D, Wang W, Shen X, Zhu JJ, Chen HY, et al. Targeting and imaging of cancer cells via monosaccharide-imprinted fluorescent nanoparticles. Sci Rep. 2016;6:22757.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jeong JY, Hong EH, Lee SY, Lee JY, Song JH, Ko SH, et al. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater. 2017;53:414–26.PubMedGoogle Scholar
  16. 16.
    Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB. Selective sensing of saccharides using simple boronic acids and their aggregates. Chem Soc Rev. 2013;42:8032–48.PubMedGoogle Scholar
  17. 17.
    Mu B, McNicholas TP, Zhang J, Hilmer AJ, Jin Z, Reuel NF, et al. A structure-function relationship for the optical modulation of phenyl boronic acid-grafted, polyethylene glycol-wrapped single-walled carbon nanotubes. J Am Chem Soc. 2013;134:17620–7.Google Scholar
  18. 18.
    Zabaleta V, Ponchel G, Salman H, Agueros M, Vauthier C, Irache JM. Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: permeability and pharmacokinetic study. Eur J Pharm Biopharm. 2012;81:514–23.PubMedGoogle Scholar
  19. 19.
    Morsy M, Helal M, El-Okr M, Ibrahim M. Preparation, purification and characterization of high purity multi-wall carbon nanotube. Spectrochim Acta A Mol Biomol Spectrosc. 2014;132:594–8.PubMedGoogle Scholar
  20. 20.
    Yang XY, Zhang XY, Ma YF, Huang Y, Wang YS, Chen YS. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Material Chem. 2009;19:2710–4.Google Scholar
  21. 21.
    Tiwari S, Chaturvedi AP, Tripathi YB, Mishra B. Microspheres based on mannosylated lysine-co-sodium alginate for macrophage-specific delivery of isoniazid. Carbohyd Polym. 2012;87:1575–82.Google Scholar
  22. 22.
    Patidar P, Bahadur A, Prasad K, Tiwari S, Aswal VK, Bahadur P. Synthesis, self-assembly and micellization characteristics of choline alkanoate ionic liquids in association with a star block copolymer. Colloids and Surf A: Physicochem Eng Aspects. 2018;555:691–8.Google Scholar
  23. 23.
    Wu L, Man C, Wang H, Lu X, Ma Q, Cai Y, et al. PEGylated multi-walled carbon nanotubes for encapsulation and sustained release of oxaliplatin. Pharm Res. 2013;30:412–23.PubMedGoogle Scholar
  24. 24.
    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, et al. Fullerene pipes. Science. 1998;280:1253–6.PubMedGoogle Scholar
  25. 25.
    Singh RK, Patel KD, Kim JJ, Kim TH, Kim JH, Shin US, et al. Multifunctional hybrid nanocarrier: magnetic CNTs ensheathed with mesoporous silica for drug delivery and imaging system. ACS Appl Mater Interfaces. 2014;6:2201–8.PubMedGoogle Scholar
  26. 26.
    Cao A, Xu C, Liang J, Wu D, Wei B. X-ray diffraction characterization on the alignment degree of carbon nanotubes. Chem Phys Lett. 2001;344:13–7.Google Scholar
  27. 27.
    Kumar A, Singh K, Pandey OP. One step synthesis and growth mechanism of carbon nanotubes. J Mater Sci Tech. 2014;30:112–6.Google Scholar
  28. 28.
    Sato Y, Yokoyama A, Nodasaka Y, Kohgo T, Motomiya K, Matsumoto H, et al. Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Sci Rep. 2516;2013:3.Google Scholar
  29. 29.
    Zhang M, Li J. Carbon nanotube in different shapes. Mater Today. 2009;12:12–8.Google Scholar
  30. 30.
    Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem B. 2003;107:6292–9.Google Scholar
  31. 31.
    Chernyak SA, Ivanov AS, Maslakov KI, Egorov AV, Shen Z, Savilov SS, et al. Oxidation, defunctionalization and catalyst life cycle of carbon nanotubes: a Raman spectroscopy view. Phys Chem Chem Phys. 2017;19:2276–85.PubMedGoogle Scholar
  32. 32.
    Rebelo SL, Guedes A, Szefczyk ME, Pereira AM, Araujo JP, Freire C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: unraveling disorder in graphitic materials. Phys Chem Chem Phys. 2016;18:12784–96.PubMedGoogle Scholar
  33. 33.
    Linhares M, Rebelo SL, Biernacki K, Magalhaes AL, Freire C. Biomimetic one-pot route to acridine epoxides. J Org Chem. 2015;80:281–9.PubMedGoogle Scholar
  34. 34.
    Coroneus JG, Goldsmith BR, Lamboy JA, Kane AA, Collins PG, Weiss GA. Mechanism-guided improvements to the single molecule oxidation of carbon nanotube sidewalls. Chem Phys Chem. 2008;9:1053–6.PubMedGoogle Scholar
  35. 35.
    Reddy KK, Satyanarayana M, Goud KY, Gobi KV, Kim H. Carbon nanotube ensembled hybrid nanocomposite electrode for direct electrochemical detection of epinephrine in pharmaceutical tablets and urine. Mater Sci Eng C. 2017;79:93–9.Google Scholar
  36. 36.
    Zhou W, Sasaki S, Kawasaki A. Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon. 2014;78:121–9.Google Scholar
  37. 37.
    Singh DK, Iyer PK, Giri PK. Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diamond Rel Mater. 2010;19:1281–8.Google Scholar
  38. 38.
    Canete-Rosales P, Álvarez-Lueje A, Bollo S. Ethylendiamine-functionalized multi-walled carbon nanotubes prevent cationic dispersant use in the electrochemical detection of dsDNA. Sensors Actuators B Chem. 2014;191:688.Google Scholar
  39. 39.
    Manasrah AD, Almanassra IW, Marei NN, Al-Mubaiyedh UA, Laoui T, Atieh MA. Surface modification of carbon nanotubes with copper oxide nanoparticles for heat transfer enhancement of nanofluids. RSC Adv. 2018;8:1791–802.Google Scholar
  40. 40.
    Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon. 2011;49:2581–602.Google Scholar
  41. 41.
    Zhang K, Zhang Y, Wang S. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci Rep. 2013;3:3448.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Chiodarelli N, Richard O, Bender H, Heyns M, Gendt SD, Groeseneken G, et al. Dispersion and aspect ratio of carbon nanotubes in aqueous suspension and their relationship with electrical resistivity of carbon nanotube filled polymer composites. Carbon. 2012;50:2322–30.Google Scholar
  43. 43.
    Kim JS, Young KL, Hyun HL, Ki SC, Kyung HK, Sang HC, et al. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicolog. 2011;85:775–86.Google Scholar
  44. 44.
    Prylutskaa SV, Grynyuka II, Matyshevskaa OP, Yashchukb VM, Prylutskyyc YI, Ritterd U, et al. Estimation of multi-walled carbon nanotubes toxicity in vitro. Phys E. 2008;40:2565–9.Google Scholar
  45. 45.
    Jin Z, Lv Y, Cao H, Yao J, Zhou J, He W, et al. Core-shell nanocarriers with high paclitaxel loading for passive and active targeting. Sci Rep. 2016;6:27559.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Parija S, Bhattacharyaa AR. Role of interfacial interaction to control the extent of wrapping of the polymer chains on multi-walled carbon nanotubes. RSC Adv. 2016;6:42334–46.Google Scholar
  47. 47.
    Poyekar AV, Bhattacharyya AR, Panwar AS, Simon GP, Sutar DS. Influence of noncovalent modification on dispersion state of multiwalled carbon nanotubes in melt-mixed immiscible polymer blends. ACS Appl Mater Interfaces. 2014;6:11054–67.PubMedGoogle Scholar
  48. 48.
    Voggu R, Franklin AD, Fisher TS, Rao CNR. Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer. J Phys Chem B. 2008;113:13053–6.Google Scholar
  49. 49.
    Sankar MS, Meera KMS, Samanta S, Paradesi D, Mandal AB, Jaisankar SN. Studies on inter and intra molecular hydrogen bonding and morphologies of single-walled carbon nanotubes/polyurethane-amide. Procedia Eng. 2014;93:43–8.Google Scholar
  50. 50.
    Sankar RM, Meera KMS, Samanta S, Murali A, Jithendra P, Mandal AB, et al. The reinforced hydrogel for drug loading: immobilization of single-walled carbon nanotubes in cross-linked polymers via multiple interactions. RSC Adv. 2012;2:12424–30.Google Scholar
  51. 51.
    Son SJ, Bai X, Nan A, Ghandehari H, Lee SB. Template synthesis of multifunctional nanotubes for controlled release. J Control Release. 2006;114:143–52.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  1. 1.Maliba Pharmacy CollegeUka Tarsadia UniversitySuratIndia
  2. 2.Pharmaceutics DivisionPERD CentreAhmedabadIndia
  3. 3.Department of PhysicsUka Tarsadia UniversitySuratIndia
  4. 4.Department of Physics, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia
  5. 5.Department of ChemistryVeer Narmad South Gujarat UniversitySuratIndia

Personalised recommendations