AAPS PharmSciTech

, Volume 19, Issue 8, pp 3687–3697 | Cite as

Development and Characterization of Novel Medicated Nanofiber for the Treatment of Periodontitis

  • Amar Deepak
  • Amit K. Goyal
  • Goutam RathEmail author
Research Article


Periodontitis is a common microbial infection that involves pocket formation due to the destruction of periodontal ligament. The present work is oriented to provide a holistic approach for the treatment of periodontitis comprising localized delivery of nanometric hydroxyapatite as a reinforcing filler and silver–metronidazole as periodontal pocket disinfectant adjunct to current periodontal therapy because of its broad-spectrum antimicrobial activity and low systemic toxicity. In the present work, electrospinning technique was used to prepare medicated nanofiber enriched with antibacterial-hydroxyapatite layers for dental application. The optimized formulation was characterized by SEM, FTIR, DSC, XRD, etc. Safety assessment and therapeutic potential of optimized formulation was evaluated in both in vitro and in vivo animal models. The newly synthesized complex (silver–metronidazole) exhibited higher antibacterial activity against the selected strain over the referenced silver and metronidazole. Results of in vitro studies suggested good compatibility of the metal complex with the polymer matrix. The drug release behavior from optimized formulation shows constant in vitro release behavior. Both in vitro and in vivo studies show broad-spectrum antimicrobial activity of the metal complex and demonstrate the potential of biomimetic nano-hydroxyapatite for filling periodontal defects. All these observations indicated that the above formulation could play a useful role in the treatment of periodontitis.

Graphical Abstract


periodontitis biodegradable nanofiber silver–metronidazole complex polyvinyl alcohol hydroxyapatite 


  1. 1.
    Brogden KA, Guthmiller JM. Polymicrobial diseases. ASM press; 2002.Google Scholar
  2. 2.
    Albandar JM, Streckfus CF, Adesanya MR, Winn DM. Cigar, pipe, and cigarette smoking as risk factors for periodontal disease and tooth loss. J Periodontol. 2000;71(12):1874–81.CrossRefPubMedGoogle Scholar
  3. 3.
    Bergström J. Cigarette smoking as risk factor in chronic periodontal disease. Community Dent Oral Epidemiol. 1989;17(5):245–7.CrossRefPubMedGoogle Scholar
  4. 4.
    H Zhang, Y. Mao, F. Zhang, C. Ye, H. Tong, Y. Su, Zhu J. The inhibitory effect of a new scFv/tP protein as siRNA delivery system to target hWAPL in cervical carcinoma. Mol Cell Biochem. 2014.Google Scholar
  5. 5.
    Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol. 2011;7(12):738–48.CrossRefPubMedGoogle Scholar
  6. 6.
    Santos VR, Lima JA, Miranda TS, Feres M, Zimmermann GS, da Rocha Nogueira-Filho G, et al. Relationship between glycemic subsets and generalized chronic periodontitis in type 2 diabetic Brazilian subjects. Arch Oral Biol. 2012;57(3):293–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Guiglia R, Di Fede O, Lo Russo L, Sprini D, Rini GB, Campisi G. Osteoporosis, jawbones and periodontal disease. 2013.Google Scholar
  8. 8.
    Esfahanian V, Shamami MS, Shamami MS. Relationship between osteoporosis and periodontal disease: review of the literature. J Dent Tehran Univ Med Sci. 2012;9(4):256–64.Google Scholar
  9. 9.
    Van Dyke TE, Dave S. Risk factors for periodontitis. J Int Acad Periodontol. 2005;7(1):3.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Joshi D, Garg T, Goyal AK, Rath G. Advanced drug delivery approaches against periodontitis. Drug Deliv. 2016;23(2):363–77.CrossRefPubMedGoogle Scholar
  11. 11.
    Tariq M, Iqbal Z, Ali J, Baboota S, Talegaonkar S, Ahmad Z, et al. Treatment modalities and evaluation models for periodontitis. Int J Pharm Investig. 2012;2(3):106.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sanz I, Alonso B, Carasol M, Herrera D, Sanz M. Nonsurgical treatment of periodontitis. J Evid Based Dent Pract. 2012;12(3):76–86.CrossRefPubMedGoogle Scholar
  13. 13.
    Herrera D, Matesanz P, Bascones-Martínez A, Sanz M. Local and systemic antimicrobial therapy in periodontics. J Evid Based Dent Pract. 2012;12(3):50–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Malik R, Garg T, Goyal AK, Rath G. Diacerein-loaded novel gastroretentive nanofiber system using PLLA: development and in vitro characterization. Artif Cells, Nanomed, Biotechnol. 2016;44(3):928–36.Google Scholar
  15. 15.
    Modgill V, Garg T, Goyal AK, Rath G. Permeability study of ciprofloxacin from ultra-thin nanofibrous film through various mucosal membranes. Artif Cells, Nanomed, Biotechnol. 2016;44(1):122–7.CrossRefGoogle Scholar
  16. 16.
    Pinheiro ALB, Gerbi MEM, de Assis Limeira F Jr, Ponzi EAC, Marques AM, Carvalho CM, et al. Bone repair following bone grafting hydroxyapatite guided bone regeneration and infra-red laser photobiomodulation: a histological study in a rodent model. Lasers Med Sci. 2009;24(2):234–40.CrossRefPubMedGoogle Scholar
  17. 17.
    Yar M, Farooq A, Shahzadi L, Khan AS, Mahmood N, Rauf A, et al. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications. Mater Sci Eng C. 2016;64:148–56.CrossRefGoogle Scholar
  18. 18.
    Kalinowska-Lis U, Felczak A, Chęcińska L, Zawadzka K, Patyna E, Lisowska K, et al. Synthesis, characterization and antimicrobial activity of water-soluble silver (I) complexes of metronidazole drug and selected counter-ions. Dalton Trans. 2015;44(17):8178–89.CrossRefPubMedGoogle Scholar
  19. 19.
    Bouyer E, Gitzhofer F, Boulos M. Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med. 2000;11(8):523–31.CrossRefPubMedGoogle Scholar
  20. 20.
    Rath G, Hussain T, Chauhan G, Garg T, Kumar GA. Fabrication and characterization of cefazolin-loaded nanofibrous mats for the recovery of post-surgical wound. Artif Cells, Nanomed, Biotechnol. 2016;44(8):1783–92.CrossRefGoogle Scholar
  21. 21.
    Aggarwal U, Goyal AK, Rath G. Development and characterization of the cisplatin loaded nanofibers for the treatment of cervical cancer. Mater Sci Eng C. 2017;75:125–32.CrossRefGoogle Scholar
  22. 22.
    Rath G, Johal E, Goyal AK. Development of serratiopeptidase and metronidazole based alginate microspheres for wound healing. Artif Cells, Blood Substit Biotechnol. 2011;39(1):44–50.CrossRefGoogle Scholar
  23. 23.
    Singh B, Garg T, Goyal AK, Rath G. Development, optimization, and characterization of polymeric electrospun nanofiber: a new attempt in sublingual delivery of nicorandil for the management of angina pectoris. Artif Cells, Nanomed, Biotechnol. 2016;44(6):1498–507.CrossRefGoogle Scholar
  24. 24.
    Struillou X, Boutigny H, Soueidan A, Layrolle P. Experimental animal models in periodontology: a review. Open Dent J. 2010;4(1).CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Joshi D, Garg T, Goyal AK, Rath G. Development and characterization of novel medicated nanofibers against periodontitis. Curr Drug Deliv. 2015;12(5):564–77.CrossRefPubMedGoogle Scholar
  26. 26.
    Greenberg J, Laster L, Listgarten M. Transgingival probing as a potential estimator of alveolar bone level. J Periodontol 1976;47(9):514–517.CrossRefPubMedGoogle Scholar
  27. 27.
    Clogston JD, Patri AK. Zeta potential measurement. Methods Mol Biol. 2011;697:63–70.CrossRefPubMedGoogle Scholar
  28. 28.
    Modgill V, Garg T, Goyal AK, Rath G. Transmucosal delivery of linagliptin for the treatment of type-2 diabetes mellitus by ultra-thin nanofibers. Curr Drug Deliv. 2015;12(3):323–32.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Department of PharmaceuticsI.S.F. College of PharmacyMogaIndia

Personalised recommendations