AAPS PharmSciTech

, Volume 19, Issue 7, pp 3258–3271 | Cite as

Thermal Magnetic Field Activated Propolis Release From Liquid Crystalline System Based on Magnetic Nanoparticles

  • Lucas de Alcântara Sica de Toledo
  • Hélen Cássia Rosseto
  • Rafaela Said dos Santos
  • Federico Spizzo
  • Lucia Del Bianco
  • Maiara Camotti Montanha
  • Elisabetta Esposito
  • Elza Kimura
  • Patricia de Souza Bonfim-Mendonça
  • Terezinha Inez Estivalet Svidzinski
  • Rita Cortesi
  • Marcos Luciano BruschiEmail author
Research Article


Intra-periodontal pocket drug delivery systems, such as liquid crystalline systems, are widely utilized improving the drug release control and the therapy. Propolis is used in the treatment of periodontal diseases, reducing the inflammatory and infectious conditions. Iron oxide magnetic nanoparticles (MNPs) can improve the treatment when an alternating external magnetic field (AEMF) is applied, increasing the local temperature. The aim of this study was to develop a liquid crystalline system containing MNPs for intra-periodontal pocket propolis release. MNPs were prepared using iron salts and the morphological, size, thermal, x-ray diffraction, magnetometry, and Mössbauer spectroscopy analyses were performed. Cytotoxicity studies using Artemia salina and fibroblasts were also accomplished. The systems were prepared using polyoxyethylene (10) oleyl ether, isopropyl myristate, purified water, and characterized by polarized optical microscopy, rheometry, and in vitro drug release profile using a periodontal pocket simulator apparatus. The antifungal activity of the systems was investigated against Candida spp. using an AEMF. MNPs displayed nanometric size, were monodisperse, and they displayed very low cytotoxicity. Microscopically homogeneous formulations were obtained displaying important physicochemical and biological properties. The system displayed prolonged release of propolis and important in vitro fungicide activity, which was increased when the AEMF was applied, indicating a potentially alternative therapy for the treatment of the periodontal disease.


magnetic nanoparticles drug delivery buccal natural products periodontal disease 



The authors thank the financial support of the Brazilian funding agencies CAPES (Coordination of Improvement of Higher Education Personnel), CNPq (National Counsel of Technological and Scientific Development; grant number 206085/2014-1), and FINEP (Financier of Studies and Projects).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12249_2018_1163_MOESM1_ESM.docx (4.1 mb)
ESM 1 (DOCX 4224 kb)


  1. 1.
    Hauck TS, Giri S, Gao Y, WCW C. Nanotechnology diagnostics for infectious diseases prevalent in developing countries. Adv Drug Deliv Rev. 2010;62:438–48.CrossRefPubMedGoogle Scholar
  2. 2.
    Khan ST, Musarrat J, Al-Khedhairy AA. Countering drug resistance, infectious diseases, and sepsis using metal and metal oxides nanoparticles: current status. Colloids Surf B: Biointerfaces. 2016;146:70–83.CrossRefPubMedGoogle Scholar
  3. 3.
    Toledo LAS, Rosseto HC, Bruschi ML. Iron oxide magnetic nanoparticles as antimicrobials for therapeutics. Pharm Dev Technol. 2017;23(4):316–23.CrossRefPubMedGoogle Scholar
  4. 4.
    McCarthy JR, Kelly KA, Sun EY, Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine. 2007;2:153–67.CrossRefPubMedGoogle Scholar
  5. 5.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Indira TK, Lakshmi PK. Magnetic nanoparticles: a review. Int J Pharm. 2010;3(3):1035–42.Google Scholar
  7. 7.
    Ojemaye MO, Okoh OO, Okoh AI. Adsorption of Cu 2þ from aqueous solution by a novel material: azomethine functionalized magnetic nanoparticles. Sep Purif Technol. 2017;183:204–15.CrossRefGoogle Scholar
  8. 8.
    Senyei A, Widder K, Czerlinski G. Magnetic guidance of drug-carrying microspheres. J Appl Phys. 1978;49(6):3578–83.CrossRefGoogle Scholar
  9. 9.
    Widder KJ, Senyel AE, Scarpelli GD. Magnetic microspheres: a model system of site specific drug delivery in vivo. Proc Soc Exp Biol Med. 1978;158(2):141–6.CrossRefPubMedGoogle Scholar
  10. 10.
    Mosbach K, Schröder U. Preparation and application of magnetic polymers for targeting of drugs. FEBS Lett. 1979;102(1):112–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Dias MHM, Lauterbur PC. Ferromagnetic particles as contrast agents for magnetic resonance imaging of liver and spleen. Magn Reson Med. 1986;3(2):328–30.CrossRefGoogle Scholar
  12. 12.
    Renshaw PF, Owen CS, McLaughlin AC, Frey TG, Leigh JS. Ferromagnetic contrast agents: a new approach. Magn Reson Med. 1986;3(2):217–25.CrossRefPubMedGoogle Scholar
  13. 13.
    Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P. Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci. 1999;212:474–82.CrossRefPubMedGoogle Scholar
  14. 14.
    Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36(13):167–81.CrossRefGoogle Scholar
  15. 15.
    Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine. 2010;5(1):277–83.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ushakov MV, Oshtrakh MI, Felner I, et al. Magnetic properties of iron oxide- based nanoparticles: Study using Mössbauer spectroscopy with a high velocity resolution and magnetization measurements. J Magn Magn Mater. 2017;431:46–8.CrossRefGoogle Scholar
  17. 17.
    Hedayatnasab Z, Abnisa F, Mohd Ashri Wan Daud W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des. 2017;123:174–96.CrossRefGoogle Scholar
  18. 18.
    Taylor EN, Webster TJ. The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. Int J Nanomedicine. 2009;4:145–52.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gupta R, Bajpai AK. Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites. Aust J Biol Sci. 2011;22(7):893–918.Google Scholar
  20. 20.
    Subbiahdoss G, Sharifi S, Grijpma DW, Laurent S, van der Mei HC, Mahmoudi M, et al. Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci. Acta Biomater. 2012;8:2047–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Arokiyaraj S, Saravanan M, Udaya Prakash NK, Valan Arasu M, Vijayakumar B, Vincent S. Enhanced antibacterial activity of iron oxide magnetic nanoparticles treated with Argemone mexicana L. leaf extract: an in vitro study. Mater Res Bull. 2013;48(9):3323–7.CrossRefGoogle Scholar
  22. 22.
    Varoni E, Tarce M, Lodi G, Carrassi A. Chlorhexidine (CHX) in dentistry: state of the art. Minerva Stomatol. 2012;61(9):399–419.PubMedGoogle Scholar
  23. 23.
    Listgarten MA. Nature of periodontal disease: Pathogenic mechanisms. J Periodontol Res. 1987;22:172–8.CrossRefGoogle Scholar
  24. 24.
    Jones DS, Woolfson AD, Brown AF, O’Neill MJ. Mucoadhesive, syringeable drug delivery systems for controlled application of metronidazole to the periodontal pocket: In vitro release kinetics, syringeability, mechanical and mucoadhesive properties. J Control Release. 1997;49:71–9.CrossRefGoogle Scholar
  25. 25.
    Medlicott NJ, Rathbone MJ, Tucker IG, Holborow DW. Delivery systems for the administration of drugs to the periodontal pocket. Adv Drug Deliv Rev. 1994;13:181–203.CrossRefGoogle Scholar
  26. 26.
    Lindhe J, Haffajee AJ, Socransky SS. Progression of periodontal disease in adult subjects in the absence of periodontal therapy. J Clin Periodontol. 1983;10:433–42.CrossRefPubMedGoogle Scholar
  27. 27.
    Bruschi ML, Jones D, Panzeri H, MPD G, de Feitas O, Lara HG. Semisolid systems containing propolis for the treatment of periodontal disease: in vitro release kinetics, syringeability, rheological, textural, and mucoadhesive properties. J Pharm Sci. 2007;96(8):2074–89.CrossRefPubMedGoogle Scholar
  28. 28.
    Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dental Res. 2012;91(10):914–20.CrossRefGoogle Scholar
  29. 29.
    Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on prevalence of periodontitis in adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86(5):11–22.CrossRefGoogle Scholar
  30. 30.
    Marcenes W, Kassabaum NJ, Bernabé E, Flaxman A, Naghavi M, Lopez A. Global burden of oral conditions in 1990–2010: a systematic analysis. J Dental Res. 2013;92(7):592–7.CrossRefGoogle Scholar
  31. 31.
    Richards D. Oral diseases affect some 3.9 billion people. J Evid Based Dental Pract. 2013;12(2):35.CrossRefGoogle Scholar
  32. 32.
    Genco RJ. Antibiotics in the treatment of human periodontal diseases. J Periodontol. 1981;52:545–58.CrossRefPubMedGoogle Scholar
  33. 33.
    El-Kamel AH, Ashri LY, Alsarra IA. Micromatricial Metronidazole Benzoate Film as a Local Mucoadhesive Delivery system for treatment of periodontal diseases. AAPS PharmSciTech. 2007;8(3):E1–E11.CrossRefGoogle Scholar
  34. 34.
    Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Natl Rev. 2010;8(7):481–90.Google Scholar
  35. 35.
    Neu HC. Crisis in antibiotic resistance. Science. 1992;257:1064–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007;3(1):95–101.CrossRefPubMedGoogle Scholar
  37. 37.
    Ghisalberti EL. Propolis: a review. Bee World. 1979;60:59–80.CrossRefGoogle Scholar
  38. 38.
    Burdock GA. Review of the biological properties and toxicity of bee propolis (Propolis). Food Chem Toxicol. 1998;36:347–63.CrossRefPubMedGoogle Scholar
  39. 39.
    Reis CMF, Carvalho JCT, Caputo LRG, Patrício KCM, Barbosa MVJ, Chieff AL, et al. Anti-inflammatory, gastric antiulcer activity and subchronic toxicity of propolis ethanolic extract. Rev Bras Farmacogn. 2000;9–10(1):43–52.CrossRefGoogle Scholar
  40. 40.
    Ceschel GC, Maffei P, Sforzini A, Borgia SL, Yasin A, Ronchi C. In vitro permeation throught porcine bucal mucosa of caffeic acid phenetyl ester (CAPE) from a topical mucoadhesive gel containing propolis. Fitoterapia. 2002;73(suppl. 1):s44–52.CrossRefPubMedGoogle Scholar
  41. 41.
    Pratsinis H, Kledsas D, Melliou E, Chinou I. Antiproliferative activity of Greek propolis. J Med Food. 2010;13(2):286–90.CrossRefPubMedGoogle Scholar
  42. 42.
    Ferreira SBS, Dias BRA, Obregón CS, Gomes CC, Pereira RR, Godoy JSR, et al. Microparticles containing propolis and metronidazole: in vitro characterization, release study and antimicrobial activity against periodontal pathogens. Pharm Dev Technol. 2014;19(2):173–80.CrossRefGoogle Scholar
  43. 43.
    Mazia RS, Pereira RRA, de Francisco LMB, Natali MRM, Dias Filho PB, Nakamura CV, et al. Formulation and evaluation of a mucoadhesive thermoresponsive system containing Brazilian green propolis for the treatment of lesions caused by Herpes Simplex type I. J Pharm Sci. 2016;105:113–21.CrossRefPubMedGoogle Scholar
  44. 44.
    Bruschi ML, Panzeri H, Lara EHG. Recent progresses in research of propolis use in Periodontology. Rev ABO Nac. 2005;13(2):86–91.Google Scholar
  45. 45.
    Coutinho A. Honeybee propolis extract in periodontal treatment: A clinical and microbiological study of propolis in periodontal treatment. Indian J Dental Res. 2012;23(2):294.CrossRefGoogle Scholar
  46. 46.
    Ribeiro MRG, Gualberto AM, Silva MAS, Souza SFC, Souza EM, Silva VC. Results of topical application of propolis extracts in reducing progression of periodontal disease. Rev Bras Plantas Med. 2015;17(4):915–21.CrossRefGoogle Scholar
  47. 47.
    Bruschi ML, Pereira RRA, de Francisco LMB. Rhe use of propolis in micro/nanostructured pharmaceutical formulations. Recent Pat Drug Deliv Formul. 2016;10(2):130–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Hay KD, Greig DE. Propolis allergy: a cause of oral mucosits with ulceration. Oral Surg Oral Med Oral Pathol. 1990;70(5):584–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Rosseto HC, Toledo LAS, de Francisco LMB, Esposito E, Lim Y, Valacchi G, et al. Nanostructured lipid systems modified with waste material of propolis for wound healing: Design, in vitro and in vivo evaluation. Colloids Surf B: Biointerfaces. 2017;158:441–52.CrossRefPubMedGoogle Scholar
  50. 50.
    Hyde ST. Identification of lyotropic liquid crystalline mesophases. In: Holmberg K, editor. Handbook of applied surface and colloid chemistry. New York: John Wiley & Sons; 2001. p. 299–332.Google Scholar
  51. 51.
    Rossetti FC, Fantini MC, Carollo AR, Tedesco AC, Bentley MV. Analysis of liquid crystalline nanoparticles by small angle x-ray diffraction: Evaluation of drug and pharmaceutical additives influence on the internal structure. J Pharm Sci. 2011;100(7):2849–57.CrossRefPubMedGoogle Scholar
  52. 52.
    Gonçalez ML, Corrêa MA, Chorilli M. Skin delivery of kojic acid-loaded nanotechnology-based drug delivery systems for the treatment of skin aging. Biomed Res Int. 2013;2013:1–9.CrossRefGoogle Scholar
  53. 53.
    Salmazi R, Calixto G, Bernegossi J, Ramos MAS, Bauab TM. Chorilli M. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. Int J Nanomedicine. 2015;10:4815–24.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Nair SC, Anoop KR. Intraperiodontal pocket: an ideal route for local antimicrobial drug delivery. J Adv Pharm Technol Res. 2012;3(1):9–15.PubMedPubMedCentralGoogle Scholar
  55. 55.
    List PH, Schmidt PC. Phytopharmaceutical technology. London: Heyden & Son; 1989.Google Scholar
  56. 56.
    Pereira RRA, Bruschi ML. Preparation and characterization of mucoadhesive thermoresponsive systems containing propolis for the treatment of vulvovaginal candidiasis. J Pharm Sci. 2013;102(4):1222–34.CrossRefPubMedGoogle Scholar
  57. 57.
    Dota KFD, Consolaro MEL, Svidzinski TIE, Bruschi ML. Antifungal activity of Brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis. Evid Based Complement Alternat Med. 2011;2011:1–8.CrossRefGoogle Scholar
  58. 58.
    De Francisco LMB, Pinto D, Rosseto HC, Toledo LAS, Santos RS, Tobaldini-Valério FK, et al. Evaluation of radical scavenging activity, intestinal cell viability and antifungal activity of Brazilian propolis by-product. Food Res Int. 2018;105:537–47.CrossRefPubMedGoogle Scholar
  59. 59.
    Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.CrossRefPubMedGoogle Scholar
  60. 60.
    Ravani L, Sarpietro MG, Esposito E, Di Stefano A, Sozio A, Calcagno M, et al. Lipid nanocarriers containing a levodopa prodrug with potential antiparkinsonian activity. Mater Sci Eng C. 2015;48:294–300.CrossRefGoogle Scholar
  61. 61.
    Pecora R. Dynamic light scattering measurement of nanometer particles in liquids. J Nanopart Res. 2000;2(2000):123–31.CrossRefGoogle Scholar
  62. 62.
    Rajabi S, Ramazani A, Hamidi M, Naji T. Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru J Pharm Sci. 2015;23:20.CrossRefGoogle Scholar
  63. 63.
    Lima CP, Cunico MM, Trevisan RR, Philippsen AF, Miguel OG, Miguel MD. Allelopathic effects and toxicity against Artemia salina Leach of extracts of the fruit of Euterpe edulis Martius. Acta Bot Bras. 2011;25(2):331–6.CrossRefGoogle Scholar
  64. 64.
    Gerola AP, Estevão BM, Caetano W, Hioka N, Tessaro AL. Chemometric studies of pheo formulated in pluronics®: photodynamic action against Artemia salina. Quim Nova. 2013;36(1):97–101.CrossRefGoogle Scholar
  65. 65.
    Jones DS, Brown AF, Woolfson AD. Rheological characterization of bioadhesive, antimicrobial, semisolids designed for the treatment of periodontal diseases: transient and dynamic viscoelastic and continuous shear analysis. J Pharm Sci. 2001;90(12):1978–90.CrossRefPubMedGoogle Scholar
  66. 66.
    Malkin AY. Fundamental topics in rheology: Rheology Fundamentals. Ontario: ChemTec Publishing; 1994.Google Scholar
  67. 67.
    Martin A, Bustamente P, Chun AHC. Physical Pharmacy. 4th ed. London: Lea & Febiger; 1993.Google Scholar
  68. 68.
    Jones DS, Bruschi ML, de Freitas O, Gremião MPD, Lara EH, Andrews GP. Rheological, mechanical and mucoadhesive properties of thermoresponsive, bioadhesive binary mixtures composed of poloxamer 407 and Carbopol 934P designed as platforms for implantable drug delivery systems for use in the oral cavity. 2009;372(1–2):39–58.Google Scholar
  69. 69.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanism of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15:25–35.CrossRefGoogle Scholar
  70. 70.
    Bruschi ML. Strategies to modify the drug release from pharmaceutical systems. Amsterdam: Elsevier; 2015.Google Scholar
  71. 71.
    Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard. CLSI document M27-A3. Wayne: Clinical and Laboratory Standards Institute; 2008.Google Scholar
  72. 72.
    Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123–33.CrossRefPubMedGoogle Scholar
  73. 73.
    Jones DS. Pharmaceutical statistics. London: The Pharmaceutical Press; 2002.Google Scholar
  74. 74.
    Bruschi ML, Franco SL, Gremião MPD. Application of an HPLC method for analysis of propolis extract. J Liq Chromatogr Relat Technol. 2003;26(14):2399–409.CrossRefGoogle Scholar
  75. 75.
    Popova M, Bankova V, Butovska D, Petkov V, Nikolova-Damyanova B, Marcazzan GL, et al. Validated methods for the quantification of biologically active constituents of poplar-type Propolis. Phytochem Anal. 2004;15(4):235–40.CrossRefPubMedGoogle Scholar
  76. 76.
    Marcucci MC. Classified propolis: A new way to produce medicines from natural sources, containing this bee product. Rev Fitos. 2006;1(3):36–46.Google Scholar
  77. 77.
    Bruschi ML, Klein T, Lopes RS, Franco SL, Gremião MPD. Contribution to the quality control protocol of propolis and its extracts. Rev Cienc Farm. 2002;23(2):289–306.Google Scholar
  78. 78.
    Nemen D, Lemos-Senna E. Preparation and characterization of resveratrol-loaded lipid-based nanocarriers for cutaneous administration. Quim Nova. 2011;34(3):408–13.CrossRefGoogle Scholar
  79. 79.
    Mahmoudi M, Simchi A, Imani M, Milani AS, Stroeve P. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B. 2008;112(46):14470–81.CrossRefPubMedGoogle Scholar
  80. 80.
    Del Bianco L, Lesci IG, Fracasso G, Barucca G, Spizzo F, Tamisari M, et al. Synthesis of nanogranular Fe3O4/biomimetic hydroxyapatite for potential applications in nanomedicine: structural and magnetic characterization. Mater Res. Express. 2015;2(6):1–14.Google Scholar
  81. 81.
    Spizzo F, Sgarbossa P, Sieni E, Semenzato A, Dughiero F, Forzan M, et al. Synthesis of ferrofluids made of iron oxide nanoflowers: interplay between carrier fluid and magnetic properties. Nanomaterials. 2017;7(11):373.CrossRefPubMedCentralGoogle Scholar
  82. 82.
    Dézsi C, Fetzer A, Gombkötö I, Szücs J, Gubicza J, Ungár T. Phase transition in nanomagnetite. J App Phys. 2008;103:104312.CrossRefGoogle Scholar
  83. 83.
    M∅rup S, Tops∅e H. Magnetic and electronic properties of microcrystals of Fe3O4. J Magn Magn Mater. 1983; 31–34:953.Google Scholar
  84. 84.
    McLaughlin JL, Rogers LL, Anderson JE. The use of biological assays to evaluate botanicals. Drug Inf J. 1998;32:513–24.CrossRefGoogle Scholar
  85. 85.
    Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2005;311:622–7.CrossRefGoogle Scholar
  86. 86.
    Dhawan A, Sharma V. Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem. 2010;398(2):589–605.CrossRefPubMedGoogle Scholar
  87. 87.
    Maccormack TJ, Clark RJ, Dang MK, Ma G, Kelly JA, Vainot JG, et al. Inhibition of enzyme activity by nanomaterials: Potential mechanisms and implications for nanotoxicity testing. Nanotoxicology. 2012;6(5):514–25.CrossRefPubMedGoogle Scholar
  88. 88.
    Bruschi ML, Panzeri H, de Freitas O, Lara EHG, Gremião MPD. Periodontal pocket drug delivery systems. Braz J Pharm Sci. 2006;42(1):29–47.Google Scholar
  89. 89.
    Bruschi ML, Lopes RS, Franco SL, Gremião MPD. In vitro release of propolis from gelatin microparticles prepared by spray-drying technique. Rev Cienc Farm. 2004;25(2):79–84.Google Scholar
  90. 90.
    Slots J. Subgingival microflora and periodontal disease. J Clin Periodontol. 1979;6:351–82.CrossRefPubMedGoogle Scholar
  91. 91.
    Jones DS, Woolfson AD, Djokic J, Coulter W. Development and mechanical characterization of bioadhesive semi-solid, polymeric systems containing tetracycline for the treatment of periodontal diseases. Pharm Res. 1996;13(11):1732–8.CrossRefGoogle Scholar
  92. 92.
    Narang RS, Narang JK. Nanomedicines dor dental applications-scope and future perspective. Int J Pharm Inv. 2015;5(3):121–3.CrossRefGoogle Scholar
  93. 93.
    Aslani A, Malekpour N. Design, formulation, and physicochemical evaluation of periodontal propolis mucoadhesive gel. Dent Res J. 2016;13(6):484–93.CrossRefGoogle Scholar
  94. 94.
    Carvalho FC, Sarmento VHV, Chiavacci LA, Barbi MS, Gremião MPD. Development and in vitro evaluation of surfactant systems for controlled release of zidovudine. J Pharm Sci. 2010;99(5):2367–74.CrossRefPubMedGoogle Scholar
  95. 95.
    Anand K, Schulte A, Vogel-Bachamayr K, Scheffzek K, Geyer M. Structural insights into the Cyclin T1–Tat–TAR RNA transcription activation complex from EIAV. Nat Struct Mol Biol. 2008;15(12):1287–92.CrossRefPubMedGoogle Scholar
  96. 96.
    Nazarenko VG, Nych AB, Lev BI. Crystal Structure in Nematic Emulsion. Phys Rev Lett. 2001;87(7):75504.CrossRefGoogle Scholar
  97. 97.
    Bruschi ML, Freitas O, Panzeri H, Gremião MPD, Lara EHG, Jones DS. Precursor system of liquid crystalline phase containing propolis microparticles for the treatment of periodontal disease: development and characterization. Drug Dev Ind Pharm. 2008;34:267–78.CrossRefPubMedGoogle Scholar
  98. 98.
    Florence AT, Atwood D. Physicochemical Principles of Pharmacy. 4th ed. London: Pharmaceutical Press; 2006.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Lucas de Alcântara Sica de Toledo
    • 1
  • Hélen Cássia Rosseto
    • 1
  • Rafaela Said dos Santos
    • 1
  • Federico Spizzo
    • 2
  • Lucia Del Bianco
    • 2
  • Maiara Camotti Montanha
    • 3
  • Elisabetta Esposito
    • 4
  • Elza Kimura
    • 3
  • Patricia de Souza Bonfim-Mendonça
    • 5
  • Terezinha Inez Estivalet Svidzinski
    • 3
    • 5
  • Rita Cortesi
    • 4
  • Marcos Luciano Bruschi
    • 1
    Email author
  1. 1.Laboratory of Research and Development of Drug Delivery Systems, Postgraduate Program in Pharmaceutical Sciences, Department of PharmacyState University of MaringaMaringaBrazil
  2. 2.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  3. 3.Postgraduate Program in Biosciences and PhysiopathologyState University of MaringaMaringaBrazil
  4. 4.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
  5. 5.Laboratory of Medical Mycology, Department of Clinical Analysis and BiomedicineState University of MaringaMaringaBrazil

Personalised recommendations