Advertisement

AAPS PharmSciTech

, Volume 19, Issue 7, pp 3237–3248 | Cite as

Smartly Engineered PEGylated Di-Block Nanopolymeric Micelles: Duo Delivery of Isoniazid and Rifampicin Against Mycobacterium tuberculosis

  • Sarita Rani
  • Avinash Gothwal
  • Iliyas Khan
  • Praveen K. Pachouri
  • N. Bhaskar
  • Umesh D. Gupta
  • Devendra S. Chauhan
  • Umesh Gupta
Research Article

Abstract

In an attempt to deliver multiple drugs through a nanoparticulate platform, the present study was designed to deliver isoniazid (INH) and rifampicin (RMP) together through conjugation/encapsulation approaches using PEG-PLA (polyethylene glycol-poly-l-lactic acid) polymeric micelles. The objective of this study is to identify the preparation and evaluation of PEGylated polymeric micelles with dual drug delivery of INH and RMP for the effective treatment of tuberculosis (TB). Synthesized PEG-PLA di-block-copolymer was further conjugated to INH-forming PEG-PLA-INH (PPI) conjugate. Separately, these conjugates were loaded with RMP building the rifampicin-loaded PEG-PLA-INH polymeric micelles (PMC). The critical micelle concentration (CMC) for the PEG-PLA copolymer was found to be 8.9 ± 0.96 mg/L, and the size and zeta potential were observed to be 187.9 ± 2.68 nm and − 8.15 ± 1.24 mV (0.251 ± 0.042 pdi), respectively. Percent drug loading of PMC was 16.66 ± 1.52 and 23.07 ± 1.05 with entrapment efficiency of 72.30 ± 3.49 and 78.60 ± 2.67% for RMP and INH, respectively. RBC hemolysis capacity of PMC was significantly less than pure RMP and INH. Microplate Alamar blue assay (MABA) along with microscopy showed that the nanoconstructed PMC were more effective than the drugs, and approximately 8-fold reduction in overall minimum inhibitory concentration (MIC) was observed. The prepared duo drug-loaded nano-engineered polymeric micelles were highly effective against sensitive Mycobacterium tuberculosis strains and found to be less hemolytic in nature. The micelles could be further explored (in the future) for in vivo anti-TB studies to establish further to achieve better treatment for TB.

Key Words

polymeric micelles (PMC) dual drug delivery isoniazid rifampicin tuberculosis (TB) 

Notes

Acknowledgements

The authors would like to acknowledge the financial support received from the Department of Science and Technology and the University Grants Commission, New Delhi, India, to Dr. Umesh Gupta in the form of Rajasthan DST R&D project [File no. 7(3) S & T/R & D/2016/6074]. The authors also would like to acknowledge the Kwality Pharmaceutical Limited, Amritsar, Punjab, India, for providing rifampicin and isoniazid as gift samples.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing financial interest.

Supplementary material

12249_2018_1151_MOESM1_ESM.docx (1008 kb)
ESM 1 (DOCX 1008 kb)

References

  1. 1.
    World Health Organization. Treatment of tuberculosis: guidelines for national programmes. Geneva: WHO Global Tuberc. Program; 2017.Google Scholar
  2. 2.
    Sante ODL. World Health Organization. Communicable Diseases Cluster: Fixed-dose combination tablets for the treatment of tuberculosis. 1999. Google Scholar
  3. 3.
    Mitchison DA. Role of individual drug in chemotherapy of tuberculosis. Int J Tuber Lung Dis. 2000;4:790–800.Google Scholar
  4. 4.
    Joshi JM. Tuberculosis chemotherapy in the 21 century: back to the basics. Lung India. 2011;28:193–200.CrossRefGoogle Scholar
  5. 5.
    World Health Organization. The use of essential drugs, Ninth report of the WHO Expert Committee, Technical Report Series 895. Geneva: World Health Organization; 2000.Google Scholar
  6. 6.
    Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 2004;10:S122–9.CrossRefGoogle Scholar
  7. 7.
    Davies D, Glowinski JJ. Jaundice due to isoniazid. Tubercle. 1961;42(4):504–6.CrossRefGoogle Scholar
  8. 8.
    Campos-Franco J, Gonzalez-Quintela A, Alende-Sixto MR. Isoniazid-induced hyperacute liver failure in a young patient receiving carbamazepine. Eur J Intern Med. 2004;15(6):396–7.CrossRefGoogle Scholar
  9. 9.
    Tafazoli S, Mashregi M, O’Brien PJ. Role of hydrazine in isoniazid-induced hepatotoxicity in a hepatocyte inflammation model. Toxicol Appl Pharmacol. 2008;229(1):94–101.CrossRefGoogle Scholar
  10. 10.
    Vidrio H, Medina M, Fernandez G, Lorenzana-Jimenez M, Campos AE. Enhancement of hydralazine hypotension by low doses of isoniazid: possible role of semicarbazide-sensitive amine oxidase inhibition. Gen Pharmacol Vasc Syst. 2000;35(4):195–204.CrossRefGoogle Scholar
  11. 11.
    Sullivan EA, Geoffroy P, Weisman R, Hoffman R, Frieden TR. Isoniazid poisonings in New York City. J Emerg Med. 1998;16(1):57–9.CrossRefGoogle Scholar
  12. 12.
    Gajendiran M, Abdul Kamal Nazer MM. Potentiometric back titration of isoniazid in pharmaceutical dosage forms using copper based mercury film electrode. J Korean Chem Soc. 2011;55(4):620–5.CrossRefGoogle Scholar
  13. 13.
    Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev. 2010;65(4–5):547–59.CrossRefGoogle Scholar
  14. 14.
    Lesorbre R, Ruffino J, Teyssier L, Achard F, Brefort G. Jaundice occurring during treatment with rifampicin: twelve observations. Rev Tuber Pneumonol. 1969;33:393.Google Scholar
  15. 15.
    Yang J, Lee CH, Park J, Seo S, Lim EK, Song YJ, et al. Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer. J Mater Chem. 2007;17(26):2695–9.CrossRefGoogle Scholar
  16. 16.
    Khan I, Gothwal A, Sharma AK, Qayum A, Singh SK, Gupta U. Biodegradable nano-architectural PEGylated approach for the improved stability and anticancer efficacy of bendamustine. Int J Bio Macromol. 2016;92:1242–1.CrossRefGoogle Scholar
  17. 17.
    Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–76.CrossRefGoogle Scholar
  18. 18.
    Zhong ZY, Zhang J, Gan ZH, Jing XB. A novel rare earth coordination catalyst for polymerization of biodegradable aliphatic lactones and lactides. Polym Int. 1998;45(1):60–6.CrossRefGoogle Scholar
  19. 19.
    Veld PJA, In’t Velner EM, Van De WP, Hamhuis J, Dijkstra PJ, Feijen J. Melt block copolymerization of ε-caprolactone and L-lactide. J Polym Sci A Polym Chem. 1997;35(2):219–26.CrossRefGoogle Scholar
  20. 20.
    Gothwal A, Khan I, Gupta U. Polymeric micelles: recent advancements in the delivery of anticancer drugs. Pharm Res. 2016;33:18–39.CrossRefGoogle Scholar
  21. 21.
    Vainionpaa S, Rokkanen P, Tormala P. Surgical applications of biodegradable polymers in human tissues. Prog Polym Sci. 1989;14:679–716.CrossRefGoogle Scholar
  22. 22.
    Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S. Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat. 2008;108:241–50.CrossRefGoogle Scholar
  23. 23.
    Aryal S, Hu CMJ, Zhang L. Polymer-cisplatin conjugate nanoparticles for acid-responsive drug delivery. ACS Nano. 2010;26(4):251–60.CrossRefGoogle Scholar
  24. 24.
    Lee SC, Kim C, Kwon IC, Chung H, Jeong SY. Polymeric micelles of poly(2-ethyl-2-oxazoline)-block-poly (ε-caprolactone) copolymer as a carrier for paclitaxel. J Control Release. 2003;89:437–46.CrossRefGoogle Scholar
  25. 25.
    Li C, Xia Z, Hu J, Chen X, Zing X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J Nanopart Res. 2007;9:777–85.CrossRefGoogle Scholar
  26. 26.
    Wei Z, Hao J, Yuan S, Li Y, Juan W, Sha X, et al. Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: formulation, optimization and in vitro characterization. Int J Pharm. 2009;376:176–85.CrossRefGoogle Scholar
  27. 27.
    Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm. 2004;57:251–61.CrossRefGoogle Scholar
  28. 28.
    Costa P, Lobo JMS. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.CrossRefGoogle Scholar
  29. 29.
    Dash PN, Murthy L, Chowdhury PN. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm Drug Res. 2010;67:217–23.Google Scholar
  30. 30.
    Singhai AK, Jain S, Jain NK. Evaluation of an aqueous injection of ketoprofen. Pharmazie. 1997;52:149–51.PubMedGoogle Scholar
  31. 31.
    Song H, Geng H, Ruan J, Wang K, Bao C, Wang J, et al. Development of polysorbate 80/phospholipid mixed micellar formation for docetaxel and assessment of its in vivo distribution in animal models. Nanoscale Res Lett. 2011;6(1):354.CrossRefGoogle Scholar
  32. 32.
    Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar blue assay. J Clin Microbiol. 1998;36:362–6.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Gupta S, Shenoy VP, Bairy I, Muralidharan S. Diagnostic efficacy of Ziehl-Neelsen method against fluorescent microscopy in detection of acid fast bacilli. Asian Pac J Trop Med. 2010;3(4):328–9.CrossRefGoogle Scholar
  34. 34.
    Hennink WE, Soga O, Nostrum CF, Fens M, Rijcken CJF, Schiffelers RM. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release. 2005;103(2):341–53.CrossRefGoogle Scholar
  35. 35.
    Park K, Jeong JH, Huh KM, Lee SC, Cho YW, Lee J. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101(13):59–68.PubMedGoogle Scholar
  36. 36.
    Opanasopit P, Yokoyama M, Watanabe M. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 2004;21(11):2001–7.CrossRefGoogle Scholar
  37. 37.
    D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257-75.CrossRefGoogle Scholar
  38. 38.
    Bhadra D, Bhadra S, Jain P, Jain NK. Pegnology: a review of PEG-ylated systems. Pharmazie. 2002;57:5–29.PubMedGoogle Scholar
  39. 39.
    Jayaram R, Shandil RK, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, et al. Isoniazid pharmacokinetics-pharmacodynamics in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2004;48(8):2951–7.CrossRefGoogle Scholar
  40. 40.
    Woo J, Cheung W, Chan R, Chan HS, Cheng A, Chan K. In vitro binding characteristics of isoniazid, rifampicin and pyrazinamide to whole plasma, albumin and α-1-acid glycoprotein. Clin Biochem. 1996;29(2):175–7.CrossRefGoogle Scholar
  41. 41.
    Lin CC, Metters AT. Metal-chelating affinity hydrogels for sustained protein release. J Biomed Mater Res. 2007;83A:954–64.  https://doi.org/10.1002/jbm.a.31282.CrossRefGoogle Scholar
  42. 42.
    Wise R. Protein binding of beta-lactams: the effects on activity and pharmacology particularly tissue penetration. II. Studies in man. J Antimicrob Chemother. 1983;12:105–18.CrossRefGoogle Scholar
  43. 43.
    Wang H, Zhao Y, Wu Y, Hu YL, Nan K, Nie G, et al. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomater. 2011;32:8281–90.CrossRefGoogle Scholar
  44. 44.
    Oh E, Delehanty JB, Sapsford KE, Susumu K, Goswami R, Canosa JB, et al. Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano. 2011;5(8):6434–48.CrossRefGoogle Scholar
  45. 45.
    Awaad A, Nakamura M, Ishimura K. Imaging of size-dependent uptake and identification of novel pathways in mouse Peyer’s patches using fluorescent organosilica particles. Nanomedicine. 2012;8(5):627–36.CrossRefGoogle Scholar
  46. 46.
    Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182–95.CrossRefGoogle Scholar
  47. 47.
    Frenkel OH, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007;353:26–32.CrossRefGoogle Scholar
  48. 48.
    Akin D, Sturgis J, Ragheb K, Sherman D, Burkholder K, Robinson PJ, et al. Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol. 2007;2:441–9.CrossRefGoogle Scholar
  49. 49.
    Sahan Y, Gurbuz O, Goncagu G, Kara A, Ozakin C. Antimicrobial effect of PEG–PLA on food-spoilage microorganisms. Food Sci Biotechnol. 2017;26(4):1123–8.CrossRefGoogle Scholar
  50. 50.
    Steven MD, Hotchkiss JH. Non-migratory bioactive polymers (NMBP) in food packaging. In: R. Ahvenainen (ed.) Novel food packaging techniques. 2003; pp. 71–102.CrossRefGoogle Scholar
  51. 51.
    Shen Z, Han G, Wang X, Luo J, Sun R. An ultra-light antibacterial bagasse-AgNP aerogel. J Mater Chem B. 2017;5:1155–8.CrossRefGoogle Scholar
  52. 52.
    Gupta A, Pant G, Mitra K, Madan J, Chourasia MK, Misra A. Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis. Mol Pharm. 2014;11:1201–7.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Department of Pharmacy, School of Chemical Sciences and PharmacyCentral University of RajasthanAjmerIndia
  2. 2.ICMR-National JALMA Institute for Leprosy and Other Mycobacterial DiseasesAgraIndia

Personalised recommendations