AAPS PharmSciTech

, Volume 19, Issue 7, pp 3187–3198 | Cite as

Preclinical Explorative Assessment of Celecoxib-Based Biocompatible Lipidic Nanocarriers for the Management of CFA-Induced Rheumatoid Arthritis in Wistar Rats

  • Pradip Nirbhavane
  • Gajanand Sharma
  • Bhupinder Singh
  • Gopal K Khuller
  • Vijay G Goni
  • A. B. Patil
  • Om Prakash KatareEmail author
Research Article


Celecoxib (CXB), a COX-2 inhibitor, is primarily indicated for long-term treatment of rheumatoid arthritis (RA). The effective therapeutic efficacy of CXB on RA via oral administration shows adverse systemic complications, and therefore, local application of CXB has been recommended. The aim of the present study was to develop and characterize solid lipid nanoparticles (SLNs) with enhanced skin permeation potential of CXB. The particle size, polydispersity index (PDI), and percentage drug entrapment (PDE) of the developed SLNs (CXB-SLNs) were found to be 240 nm, < 0.3, and ~ 86% respectively. The developed SLNs exhibited sustained release up to 70% at the end of 48 h. Drug permeation was found to be 45% for SLN gel and 31% for conventional gel. The dermatokinetic studies also confirmed enhanced permeation of CXB in the epidermis and dermis and revealed superiority of the developed SLN gel vis-à-vis the conventional gel. Further, in the CFA-induced arthritis rat model, % arthritis index (AI) of the CXB-SLN gel formulation was found to be very less (18.54%) as compared to untreated (187.34%) and conventional gel-treated (91.61%) animals. In conclusion, the current study can provide a suitable alternative for the development of an effective topical formulation of CXB in lipid nanocarriers.


celecoxib lipid nanocarriers skin permeation rheumatoid arthritis 


Funding Information

The first author received an SRF fellowship from the Indian Council of Medical Research (ICMR), New Delhi (ref no. 45/31/2013-Nan/BMS).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med. 2011;365:2205–19.CrossRefGoogle Scholar
  2. 2.
    Lee DM, Weinblatt ME. Rheumatoid arthritis. Lancet. 2001;358:903–11.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Simon TA, Kawabata H, Ray N, Baheti A, Suissa S, Esdaile JM. Prevalence of co-existing autoimmune disease in rheumatoid arthritis: a cross-sectional study. Adv Ther. 2017;34:2481–90.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Quan L-D, Thiele GM, Tian J, Wang D. The development of novel therapies for rheumatoid arthritis. Expert Opin Ther Pat. 2008;18:723–38.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wong R, Davis A, Badley E, Grewal R, Mohammed M. Prevalence of arthritis and rheumatic diseases around the world: a growing burden and implications for health care needs. Model. Care Arthritis, Bone Jt. Dis. 2010;1–110. Available from: papers://6d7233c7-0c7f-43d7-b776-a2bbe7398ece/Paper/p2171.Google Scholar
  6. 6.
    Garner SE, Fidan D, Frankish RR, Judd M, Shea B, Towheed T, et al. Celecoxib for rheumatoid Arthritis. Cochrane Database Syst Rev. 2017;Google Scholar
  7. 7.
    Fujimori S, Hanada R, Hayashida M, Sakurai T, Ikushima I, Sakamoto C. Celecoxib monotherapy maintained small intestinal mucosa better compared with loxoprofen plus lansoprazole treatment a double-blind, randomized, controlled trial. J Clin Gastroenterol. 2016;50:218–26.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Verhoeven F, Totoson P, Marie C, Prigent-Tessier A, Wendling D, Tournier-Nappey M, et al. Diclofenac but not celecoxib improves endothelial function in rheumatoid arthritis: a study in adjuvant-induced arthritis. Atherosclerosis. 2017;266:136–44.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gisvold W and. Organic medicinal and pharmaceutical chemistry. 12th ed. Lippincott Williams and Wilkins; 2011.Google Scholar
  10. 10.
    Bachar M, Mandelbaum A, Portnaya I, Perlstein H, Even-Chen S, Barenholz Y, et al. Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled β-casein micelles. J Control Release. 2012;160:164–71.CrossRefGoogle Scholar
  11. 11.
    Walters KA, K.R. B. Dermatological formulation and transdermal systems. Dermatol Transdermal Formul. 2002;Google Scholar
  12. 12.
    Barry BW. Transdermal drug delivery. Pharm Des Manuf Med. 2007:409–533.Google Scholar
  13. 13.
    Rastogi V, Yadav P. Transdermal drug delivery system: an overview. Asian J Pharm. 2012;6:161–70.CrossRefGoogle Scholar
  14. 14.
    Nirbhavane P, Vemuri N, Kumar N, Khuller GK. Lipid nanocarrier-mediated drug delivery system to enhance the oral bioavailability of rifabutin. AAPS Pharm Sci Tech. 2017;18:829–37.CrossRefGoogle Scholar
  15. 15.
    Wissing SA, Müller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity - in vivo study. Eur J Pharm Biopharm. 2003;56:67–72.CrossRefGoogle Scholar
  16. 16.
    Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54:S131–55.CrossRefGoogle Scholar
  17. 17.
    Maia CS, Mehnert W, Schäfer-Korting M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids. Int J Pharm. 2000;196:165–7.CrossRefGoogle Scholar
  18. 18.
    Wissing SA, Müller RH. Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 2003. p. 65–8.CrossRefGoogle Scholar
  19. 19.
    Wissing SA, Müller RH. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int J Cosmet Sci. 2001;23:233–43.CrossRefGoogle Scholar
  20. 20.
    Sanna V, Gavini E, Cossu M, Rassu G, Giunchedi P. Solid lipid nanoparticles (SLN) as carriers for the topical delivery of econazole nitrate: in-vitro characterization, ex-vivo and in-vivo studies. J Pharm Pharmacol. 2007;59:1057–64. A.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT. Development of terbinafine solid lipid nanoparticles as a topical delivery system. Int J Nanomedicine. 2012;7:4409–18.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007. p. 427–43.Google Scholar
  23. 23.
    Baboota S, Shakeel F, Ahuja A, Ali J, Shafiq S. Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxib. Acta Pharma. 2007;57:315–32.CrossRefGoogle Scholar
  24. 24.
    Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Enhanced anti-inflammatory effects of celecoxib from a transdermally applied nanoemulsion. Pharmazie. 2009;64:258–9.PubMedGoogle Scholar
  25. 25.
    Joshi M, Patravale V. Nanostructured lipid carrier (NLC) based gel of celecoxib. Int J Pharm. 2008;346:124–32.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Garg NK, Tyagi RK, Singh B, Sharma G, Nirbhavane P, Kushwah V, et al. Nanostructured lipid carrier mediates effective delivery of methotrexate to induce apoptosis of rheumatoid arthritis via NF-kappaB and FOXO1. Int J Pharm Netherlands. 2016;499:301–20.CrossRefGoogle Scholar
  27. 27.
    Garg NK, Sharma G, Singh B, Nirbhavane P, Tyagi RK, Shukla R, et al. Quality by Design (QbD)-enabled development of aceclofenac loaded-nano structured lipid carriers (NLCs): an improved dermatokinetic profile for inflammatory + (s). Int J Pharm. 2017;517:413–31.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Raza K, Singh B, Lohan S, Sharma G, Negi P, Yachha Y, et al. Nano-lipoidal carriers of tretinoin with enhanced percutaneous absorption, photostability, biocompatibility and anti-psoriatic activity. Int J Pharm. 2013;456:65–72.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Nair A, Jacob S, Al-Dhubiab B, Attimarad M, Harsha S. Basic considerations in the dermatokinetics of topical formulations. Brazilian J Pharm Sci. 2013;49:423–34.CrossRefGoogle Scholar
  30. 30.
    Katare O, Raza K, Wadhwa S, Kumar P, Thotakura N. Dermatokinetics as an important tool to assess the bioavailability of drugs by topical nanocarriers. Curr Drug Metab [Internet]. 2017;18:1–1.CrossRefGoogle Scholar
  31. 31.
    Sharma G, Saini MK, Thakur K, Kapil N, Garg NK, Raza K, et al. Aceclofenac cocrystal nanoliposomes for rheumatoid arthritis with better dermatokinetic attributes: a preclinical study. Nanomedicine. 2017;12:615–38.CrossRefGoogle Scholar
  32. 32.
    Sharma G, Dhankar G, Thakur K, Raza K, Katare OP. Benzyl benzoate-loaded microemulsion for topical applications: enhanced dermatokinetic profile and better delivery promises. AAPS PharmSciTech. 2015;17:1221–31.CrossRefGoogle Scholar
  33. 33.
    Ali EAI, Barakat BM, Hassan R. Antioxidant and angiostatic effect of Spirulina platensis suspension in complete Freund’s adjuvant-induced arthritis in rats. PLoS One. 2015;10CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ekambaram S, Perumal SS, Subramanian V. Evaluation of antiarthritic activity of Strychnos potatorum Linn seeds in Freund’s adjuvant induced arthritic rat model. BMC Complement Altern Med. 2010;10Google Scholar
  35. 35.
    Garg NK, Singh B, Tyagi RK, Sharma G, Katare OP. Effective transdermal delivery of methotrexate through nanostructured lipid carriers in an experimentally induced arthritis model. Colloids Surf B Biointerfaces. 2016;147:17–24.CrossRefGoogle Scholar
  36. 36.
    Kaur A, Bhoop BS, Chhibber S, Sharma G, Gondil VS, Katare OP. Supramolecular nano-engineered lipidic carriers based on diflunisal-phospholipid complex for transdermal delivery: QbD based optimization, characterization and preclinical investigations for management of rheumatoid arthritis. Int J Pharm. 2017;533:206–24.CrossRefGoogle Scholar
  37. 37.
    Dubey V, Mishra D, Dutta T, Nahar M, Saraf DK, Jain NK. Dermal and transdermal delivery of an anti-psoriatic agent via ethanolic liposomes. J. Control. Release. 2007;Google Scholar
  38. 38.
    Lee SW, Kim JH, Park MC, Park YB, Chae WJ, Morio T, et al. Alleviation of rheumatoid arthritis by cell-transducible methotrexate upon transcutaneous delivery. Biomaterials. 2012;33:1563–72.CrossRefGoogle Scholar
  39. 39.
    Khurana S, Bedi PMS, Jain NK. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem Phys Lipids. 2013;175–176:65–72.CrossRefGoogle Scholar
  40. 40.
    Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm. 2004;275:13–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Trommer H, Neubert RHH. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol. Physiol. 2006. p. 106–21.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jain AK, Jain A, Garg NK, Agarwal A, Jain A, Jain SA, et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf B Biointerfaces. 2014;121:222–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Raza K, Singh B, Singal P, Wadhwa S, Katare OP. Systematically optimized biocompatible isotretinoin-loaded solid lipid nanoparticles (SLNs) for topical treatment of acne. Colloids Surf B Biointerfaces. 2013;105:67–74.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sharma G, Kamboj S, Thakur K, Negi P, Raza K, Katare OP. Delivery of thermoresponsive-tailored mixed micellar nanogel of lidocaine and prilocaine with improved dermatokinetic profile and therapeutic efficacy in topical anaesthesia. AAPS PharmSciTech. 2017;18:790–802.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Pradip Nirbhavane
    • 1
  • Gajanand Sharma
    • 1
  • Bhupinder Singh
    • 1
    • 2
  • Gopal K Khuller
    • 3
  • Vijay G Goni
    • 4
  • A. B. Patil
    • 5
  • Om Prakash Katare
    • 1
    Email author
  1. 1.University Institute of Pharmaceutical Sciences, UGC Centre of Advanced StudiesPanjab UniversityChandigarhIndia
  2. 2.UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences)Panjab UniversityChandigarhIndia
  3. 3.Department of BiochemistryPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  4. 4.Department of OrthopaedicsPostgraduate Institute of Medical Education and ResearchChandigarhIndia
  5. 5.Department of OrthopedicsGadag Institute of Medical Sciences (GIMS)GadagIndia

Personalised recommendations