AAPS PharmSciTech

, Volume 19, Issue 8, pp 3751–3762 | Cite as

Bioavailability Enhancement of Aripiprazole Via Silicosan Particles: Preparation, Characterization and In vivo Evaluation

  • Azza A. Mahmoud
  • Alaa H. Salama
  • Rehab N. ShammaEmail author
  • Faten Farouk
Research Article


The aim of this study was to design a novel carrier for enhancing the bioavailability of the poorly water-soluble drug, aripiprazole (ARP). Silicosan, the applied carrier, was obtained by chemical interaction between tetraethyl orthosilicate (TEOS) and chitosan HCl. Different ARP-loaded silicosan particles were successfully prepared in absence and presence of one of the following surfactants; Tween 80, Poloxamer 407 and cetyltrimethylammonium bromide (CTAB). The prepared ARP-loaded silicosan particles were thoroughly investigated for their structures using FTIR, XRD, and DSC analysis as well as their particle size, zeta potential, flowability, drug content, and in vitro drug release efficiencies. The prepared ARP-loaded silicosan particles were characterized by amorphous structure, high drug entrapment efficiency and a remarkable improvement in the release of aripiprazole in simulated gastric fluid. SEM and EDX revealed that the morphology and silica atom content in the prepared ARP-loaded silicosan particles were affected by the used surfactant in their formulations. The selected ARP-loaded silicosan particles were subjected to in vivo study using rabbits. The obtained pharmacokinetic results showed that the relative bioavailability for orally administered ARP-loaded silicosan particles (SC-2-CTAB) was 66% higher relative to the oral suspension (AUC0-10h was 16.38 ± 3.21 and 27.23 ± 2.35 ng.h/mL for drug powder and SC-2-CTAB formulation, respectively). The obtained results suggested the unique-structured silicosan particles to be used as successful vehicle for ARP.


aripiprazole tetraethyl orthosilicate surfactant dissolution bioavailability 


Compliance with Ethical Standards

All animal experiments were approved by the Research Ethics Committee (REC) for Animal Subject Research at the Faculty of Pharmacy, Cairo University, Egypt and operated according to the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978).

Conflict of Interest

The authors declare that there is no conflict of interest.


  1. 1.
    Swainston Harrison T, Perry CM. Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs. 2004;64(15):1715–36.CrossRefPubMedGoogle Scholar
  2. 2.
    Drug Bank: Aripiprazole. (2018). Retrieved April 2018, from
  3. 3.
    Łaszcz M, Witkowska A. Studies of phase transitions in the aripiprazole solid dosage form. J Pharm Biomed Anal. 2016;117:298–303.CrossRefPubMedGoogle Scholar
  4. 4.
    Mihajlovic T, Kachrimanis K, Graovac A, Djuric Z, Ibric S. Improvement of aripiprazole solubility by complexation with (2-hydroxy)propyl-β-cyclodextrin using spray drying technique. AAPS PharmSciTech. 2012;13(2):623–31.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Badr-Eldin SM, Ahmed TA, Ismail HR. Aripiprazole-cyclodextrin binary systems for dissolution enhancement: effect of preparation technique, cyclodextrin type and molar ratio. Iran J Basic Med Sci. 2013;16(12):1223–31.Google Scholar
  6. 6.
    Abdelbary AA, Li X, el-Nabarawi M, Elassasy A, Jasti B. Comparison of nanomilling and coprecipitation on the enhancement of in vitro dissolution rate of poorly water-soluble model drug aripiprazole. Pharm Dev Technol. 2014;19(4):491–500.CrossRefPubMedGoogle Scholar
  7. 7.
    Xu Y, Liu X, Lian R, Zheng S, Yin Z, Lu Y, et al. Enhanced dissolution and oral bioavailability of aripiprazole nanosuspensions prepared by nanoprecipitation/homogenization based on acid-base neutralization. Int J Pharm. 2012;438:287–95.CrossRefPubMedGoogle Scholar
  8. 8.
    Jamróz W, Kurek M, Łyszczarz E, Szafraniec J, Knapik-Kowalczuk J, Syrek K, et al. 3D printed orodispersible films with aripiprazole. Int J Pharm. 2017; 533(2):413–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Silki, Sinha VR. Enhancement of in vivo efficacy and oral bioavailability of aripiprazole with solid lipid nanoparticles. AAPS PharmSciTech. 2018;19(3):1264–73.CrossRefPubMedGoogle Scholar
  10. 10.
    Sawant K, Pandey A, Patel S. Aripiprazole loaded poly (caprolactone) nanoparticles: optimization and in vivo pharmacokinetics. Mater Sci Eng C Mater Biol Appl. 2016;66:230–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Kierys A. Synthesis of aspirin-loaded polymer-silica composites and their release characteristics. ACS Appl Mater Interfaces. 2014;6(16):14369–76.CrossRefPubMedGoogle Scholar
  12. 12.
    Benezra M, Penate-Medina O, Zanzonico PB, Schaer D, Ow H, Burns A, et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Investig. 2011;121(7):2768–80.CrossRefPubMedGoogle Scholar
  13. 13.
    Bradbury MS, Phillips E, Montero PH, Cheal SM, Stambuk H, Durack JC, et al. Clinically-translated silica nanoparticles as dual-modality cancer-targeted probes for image-guided surgery and interventions. Integr Biol (Camb). 2013;5(1):74–86.CrossRefGoogle Scholar
  14. 14.
    Ahern RJ, Hanrahan JP, Tobin JM, Ryan KB, Crean AM. Comparison of fenofibrate-mesoporous silica drug-loading processes for enhanced drug delivery. Eur J Pharm Sci. 2013;50(3–4):400–9.CrossRefPubMedGoogle Scholar
  15. 15.
    McCarthy CA, Ahern RJ, Dontireddy R, Ryan KB, Crean AM. Mesoporous silica formulation strategies for drug dissolution enhancement: a review. Expert Opin Drug Deliv. 2016;13(1):93–108.CrossRefPubMedGoogle Scholar
  16. 16.
    Van Speybroeck M, Barillaro V, Thi TD, Mellaerts R, Martens J, Van Humbeeck J, et al. Ordered mesoporous silica material SBA-15: a broadspectrum formulation platform for poorly soluble drugs. J Pharm Sci. 2009;98(8):2648–58.CrossRefPubMedGoogle Scholar
  17. 17.
    Waters LJ, Hussain T, Parkes G, Hanrahan JP, Tobin JM. Inclusion of fenofibrate in a series of mesoporous silicas using microwave irradiation. Eur J Pharm Biopharm. 2013;85(3 Pt B):936–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm. 2004;57(3):533–40.CrossRefPubMedGoogle Scholar
  19. 19.
    Shen SC, Ng WK, Chia L, Dong YC, Tan RBH. Stabilized amorphous state of ibuprofen by co-spray drying with mesoporous SBA-15 to enhance dissolution properties. J Pharm Sci. 2010;99(4):1997–2007.CrossRefPubMedGoogle Scholar
  20. 20.
    Yilmaz E, Bengisu M. Drug entrapment in silica microspheres through a single step sol-gel process and in vitro release behavior. J Biomed Mater Res B Appl Biomater. 2006;77(1):149–55.CrossRefPubMedGoogle Scholar
  21. 21.
    Ammar HO, Ghorab M, Kamel R, Salama AH. A trial for the design and optimization of pH-sensitive microparticles for intestinal delivery of cinnarizine. Drug Deliv and Transl Res. 2016;6(3):195–209.CrossRefGoogle Scholar
  22. 22.
    European Pharmacopoeia Powder flow. 7th edn, chapter 2.9.36. Strasbourg: Council of Europe; 2010. pp. 308–11.Google Scholar
  23. 23.
    Staniforth J. Powder flow. In: Aulton M, editor. Pharmaceutics, The science of dosage form design. 2nd edn. London: Churchill Livingstone; 2002. pp. 197–210.Google Scholar
  24. 24.
    Mehanna MM, Motawaa AM, Samaha MW. Tadalafil inclusion in microporous silica as effective dissolution enhancer: optimization of loading procedure and molecular state characterization. J Pharm Sci. 2011;100(5):1805–18.CrossRefPubMedGoogle Scholar
  25. 25.
    Ahmed IS, El Hosary R, Hassan MA, Haider M, Abd-Rabo MM. Efficacy and safety profiles of oral atorvastatin-loaded nanoparticles: effect of size modulation on biodistribution. Mol Pharm. 2018;15(1):247–55.CrossRefPubMedGoogle Scholar
  26. 26.
    Matloub AA, AbouSamra MM, Salama AH, Rizk MZ, Aly HF, Fouad GI. Cubic liquid crystalline nanoparticles containing a polysaccharide from Ulva fasciata with potent antihyperlipidaemic activity. Saudi Pharm J. 2018;26(2):224–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Sisco Research Laboratories. Cetyltrimethyl ammonium bromide (CTAB), product data sheet; 2018.Google Scholar
  28. 28.
    Science Lab. Polysorbate 80, material safety data sheet; 2013.Google Scholar
  29. 29.
    BASF. Pluracare® F 127, safety data sheet; 2017.Google Scholar
  30. 30.
    Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Van Damme H. Nanoscale and mesoscale morphology: of stereology and mathematical morphology. In: Papirer E, editor. Adsorption on silica surfaces. New York: Marcel Dekker Inc.; 2000. pp. 119–65.Google Scholar
  32. 32.
    Salama AH, Mahmoud AA, Kamel R. A novel method for preparing surface-modified fluocinolone acetonide loaded PLGA nanoparticles for ocular use: in vitro and in vivo evaluations. AAPS PharmSciTech. 2016;17(5):1159–72.CrossRefPubMedGoogle Scholar
  33. 33.
    Ammar HO, El-Nahhas SA, Ghorab MM, Salama AH. Chitosan/cyclodextrin nanoparticles as drug delivery system. J Incl Phenom Macrocycl Chem. 2012;72(1–2):127–36.CrossRefGoogle Scholar
  34. 34.
    Tozuka Y, Oguchi T, Yamamoto K. Adsorption and entrapment of salicylamide molecules into the mesoporous structure of folded sheets mesoporous material (FSM-16). Pharm Res. 2003;20(6):926–30.CrossRefPubMedGoogle Scholar
  35. 35.
    Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, van Humbeeck J, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm. 2008;69(1):223–30.CrossRefPubMedGoogle Scholar
  36. 36.
    Williams RO 3rd, Mahaguna V, Sriwongjanya M. Characterization of an inclusion complex of cholesterol and hydroxypropyl-beta-cyclodextrin. Eur J Pharm Biopharm. 1998;46(3):355–60.CrossRefPubMedGoogle Scholar
  37. 37.
    Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73(3):373–84.CrossRefPubMedGoogle Scholar
  38. 38.
    Staniforth JN. Pharmaceutics: the science of dosage form design. Livingstone, Churchill: M. E. Aulton; 1988.Google Scholar
  39. 39.
    Basha M, Salama AH, el Awdan S. Reconstitutable spray dried ultra-fine dispersion as a robust platform for effective oral delivery of an antihyperlipidemic drug. Int J Pharm. 2017;532(1):478–90.CrossRefPubMedGoogle Scholar
  40. 40.
    Maleki A, Kettiger H, Schoubben A, Rosenholm JM, Ambrogi V, Hamidi M. Mesoporous silica materials: from physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J Control Release. 2017;262:329–347.CrossRefPubMedGoogle Scholar
  41. 41.
    Rosenholm JM, Czuryszkiewicz T, Kleitz F, Rosenholm JB, Lindén M. On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution. Langmuir. 2007;23(8):4315–23.CrossRefPubMedGoogle Scholar
  42. 42.
    Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, et al. Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release. 2005;108(2–3):362–74.CrossRefPubMedGoogle Scholar
  43. 43.
    Forster A, Hempenstall J, Rades T. Characterization of glass solutions of poorly water-soluble drugs produced by melt extrusion with hydrophilic amorphous polymers. J Pharm Pharmacol. 2001;53(3):303–15.CrossRefPubMedGoogle Scholar
  44. 44.
    Khan KA, Rhodes CT. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm Acta Helv. 1972;47(10):594–607.PubMedGoogle Scholar
  45. 45.
    Galgatte UC, Chaudhari PD. Preformulation study of poloxamer 407 gels: effects of additives. Int J Pharm Pharm Sci. 2014;6(1):130–3.Google Scholar
  46. 46.
    Shoukri RA, Ahmed IS, Shamma RN. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. Eur J Pharm Biopharm. 2009;73(1):162–71.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Pharmaceutical IndustriesFuture University in EgyptCairoEgypt
  2. 2.Department of Pharmaceutical Technology, Pharmaceutical and Drug Industries Research DivisionNational Research CentreCairoEgypt
  3. 3.Department of Pharmaceutics, Faculty of PharmacyAhram Canadian University6th of October CityEgypt
  4. 4.Department of Pharmaceutics and Industrial Pharmacy, Faculty of PharmacyCairo UniversityCairoEgypt
  5. 5.Department of Pharmaceutical Chemistry, Faculty of PharmacyAhram Canadian University6th of October CityEgypt

Personalised recommendations