AAPS PharmSciTech

, Volume 19, Issue 7, pp 3177–3186 | Cite as

In Vivo Determination of Moisturizers Efficacy on Human Skin Hydration by Confocal Raman Spectroscopy

  • Vamshi Krishna TippavajhalaEmail author
  • Taciana D. Magrini
  • Daniele C. Matsuo
  • Michely G. P. Silva
  • Priscila P. Favero
  • Leonardo Rodrigues De Paula
  • Airton Abrahão MartinEmail author
Research Article


This research work deals with in vivo testing of the efficacy of commercial moisturizer products on the hydration of human skin, as there are various in vitro and ex vivo studies questioning their activity. Confocal Raman spectroscopy was used for this purpose of assessing the efficacy of moisturizers on skin hydration mainly owing to its simple, non-invasive, non-destructive, timesaving, and cost-effective nature. Water content and natural moisturizing factor (NMF) of stratum corneum were analyzed and compared using this method at high wavenumber (2500–4000 cm−1) and fingerprint (400–1800 cm−1) spectral regions, respectively, as these two parameters are correlated to skin hydration. Four commercial moisturizer products of different brands were tested on volar forearm region of healthy human female volunteers. This study was conducted for a period of 30 days with 0, 7, and 30 days as time points of analysis. The results of this study clearly indicate that not all the moisturizer products hydrate the skin to the expected levels, and this extent of skin hydration varies with duration of application of these products.


moisturizer efficacy in vivo human skin hydration confocal Raman spectroscopy 


Funding Information

Airton Abrahão Martin thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (310375/2017) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (project number 88881.068140/2014-01) for their financial support.


  1. 1.
    Wickett RR, Visscher MO. Structure and function of the epidermal barrier. Am J Infect Control. 2006;34:S98–S110.CrossRefGoogle Scholar
  2. 2.
    Rawlings AV, Harding CR. Moisturization and skin barrier function. Dermatol Ther. 2004;17(Suppl 1):43–8.CrossRefGoogle Scholar
  3. 3.
    Verdier-Sevrain S, Bonte F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol. 2007;6:75–82.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Berardesca E, Maibach HI. Transepidermal water loss and skin surface hydration in the non invasive assessment of stratum corneum function, dermatosen in beruf und umwelt. Occupation and Environment. 1990;38:50–3.PubMedGoogle Scholar
  5. 5.
    Crowther JM, Sieg A, Blenkiron P, Marcott C, Matts PJ, Kaczvinsky JR, et al. Measuring the effects of topical moisturizers on changes in stratum corneum thickness, water gradients and hydration in vivo. Br J Dermatol. 2008;159:567–77.PubMedGoogle Scholar
  6. 6.
    Gammal CFL, Pagnoni A, Kligman AM, Gammal SEL. A model to assess the efficacy of moisturizers – the quantification of soap-induced xerosis by image analysis of adhesive-coated discs (D-Squames). Clin Exp Dermatol. 1996;21:338–43.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Held E, Sveinsdottir S, Agner T. Effect of long-term use of moisturizer on skin hydration, barrier function and susceptibility to irritants. Acta Derm Venereol. 1999;79:49–51.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Berardesca E, Distante F, Vignoli GP, Oresajo C, Green B. Alpha hydroxyacids modulate stratum corneum barrier function. Br J Dermatol. 1997;137:934–8.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Buraczewska I, Berne B, Lindberg M, Törmä H, Lodén M. Changes in skin barrier function following long-term treatment with moisturizers, a randomized controlled trial. Br J Dermatol. 2007;156:492–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Loden M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am J Clin Dermatol. 2003;4:771–88.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zachariae C, Held E, Johansen JD, Menne T, Agner T. Effect of a moisturizer on skin susceptibility to NiCl2. Acta Derm Venereol. 2003;83:93–7.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jemec GBE, Na R, Wulf HC. The inherent capacitance of moisturising creams: a source of false positive results? Skin Pharmacol Physiol. 2000;13:182–7.CrossRefGoogle Scholar
  13. 13.
    Sagiv AE, Dikstein S, Ingber A. The efficiency of humectants as skin moisturizers in the presence of oil. Skin Res Technol. 2001;7:32–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Girard P, Beraud A, Sirvent A. Study of three complementary techniques for measuring cutaneous hydration in vivo in human subjects: NMR spectroscopy, transient thermal transfer and corneometry - application to xerotic skin and cosmetics. Skin Res Technol. 2000;6:205–13.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hester SL, Rees CA, Kennis RA, Zoran DL, Bigley KE, Wright AS, et al. Evaluation of corneometry (skin hydration) and transepidermal water-loss measurements in two canine breeds. J Nutr. 2004;134:2110s–3s.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Virkler K, Lednev IK. Raman spectroscopy offers great potential for the nondestructive confirmatory identification of body fluids. Forensic Sci Int. 2008;181:e1–5.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Raman CV, Krishnan KS. A new type of secondary radiation. Nature. 1928;121:501–2.CrossRefGoogle Scholar
  18. 18.
    Bumbrah GS, Sharma RM. Raman spectroscopy – basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt J Forensic Sci. 2016;6:209–15CrossRefGoogle Scholar
  19. 19.
    Pappas D, Smith BW, Winefordner JD. Raman spectroscopy in bioanalysis. Talanta. 2000;51:131–44.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Das RS, Agrawal YK. Raman spectroscopy: recent advancements, techniques and applications. Vib Spectrosc. 2011;57:163–76.CrossRefGoogle Scholar
  21. 21.
    Teixeira AP, Rangel JL, Raniero LJ, Tosato MG, Fávero PP, Martin AA. Confocal Raman spectroscopy: determination of natural moisturizing factor profile related to skin hydration. Revista Brasileira de Engenharia Biomédica. 2014;30:11–6.CrossRefGoogle Scholar
  22. 22.
    Baena JR, Lendl B. Raman spectroscopy in chemical bioanalysis. Curr Opin Chem Biol. 2004;8:534–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu R, Liu J-f, Zhou X-x, Jiang G-b, Liu R. Applications of Raman-based techniques to on-site and in-vivo analysis. TrAC Trends Anal Chem. 2011;30:1462–76.CrossRefGoogle Scholar
  24. 24.
    Chrit L, Bastien P, Biatry B, Simonnet JT, Potter A, Minondo AM, et al. In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent, pMPC. Biopolymers. 2007;85:359–69.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Caspers PJ, Lucassen GW, Puppels GJ. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J. 2003;85:572–80.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Chrit L, Hadjur C, Morel S, Sockalingum G, Lebourdon G, Leroy F, et al. In vivo chemical investigation of human skin using a confocal Raman fiber optic microprobe. J Biomed Opt. 2005;10:44007.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tellez SC, Pereira L, dos Santos L, Favero P, Martin AA. RM1 semi empirical and DFT: B3LYP/3-21G theoretical insights on the confocal Raman experimental observations in qualitative water content of the skin dermis of healthy young, healthy elderly and diabetic elderly women's. Spectrochim Acta A Mol Biomol Spectrosc. 2015;149:1009–19.CrossRefGoogle Scholar
  28. 28.
    Nakagawa N, Matsumoto M, Sakai S. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res Technol. 2010;16:137–41.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Chrit L, Bastien P, Sockalingum GD, Batisse D, Leroy F, Manfait M, et al. An in vivo randomized study of human skin moisturization by a new confocal Raman fiber-optic microprobe: assessment of a glycerol-based hydration cream. Skin Pharmacol Physiol. 2006;19:207–15.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fitzpatrick TB. THe validity and practicality of sun-reactive skin types i through vi. Arch Dermatol. 1988;124:869–71.CrossRefGoogle Scholar
  31. 31.
    Berardesca E. EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Res Technol. 1997;3:126–32.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bohling A, Bielfeldt S, Himmelmann A, Keskin M, Wilhelm KP. Comparison of the stratum corneum thickness measured in vivo with confocal Raman spectroscopy and confocal reflectance microscopy. Skin Res Technol. 2014;20:50–7.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Caspers PJ, Lucassen GW, Bruining HA, Puppels GJ. Automated depth-scanning confocal Raman microspectrometer for rapid in vivo determination of water concentration profiles in human skin. J Raman Spectrosc. 2000;31:813–8.CrossRefGoogle Scholar
  34. 34.
    Caspers PJ, Lucassen GW, Carter EA, Bruining HA, Puppels GJ. In vivo confocal Raman microspectroscopy of the skin: noninvasive determination of molecular concentration profiles. J Invest Dermatol. 2001;116:434–42.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutics, Manipal College of Pharmaceutical SciencesManipal Academy of Higher EducationManipalIndia
  2. 2.Laboratory of Biomedical Vibrational Spectroscopy (LEVB), Institute of Research and Development (IP&D)Universidade do Vale do Paraiba (UNIVAP)São José dos CamposBrazil
  3. 3.Biomedical Engineering Innovation Center, Biomedical Vibrational Spectroscopy GroupUniversidade Brasil-UNBrItaqueraBrazil
  4. 4.DermoProbes: Skin and Hair Technology OptimizationSão José dos CamposBrazil
  5. 5.Natura Inovação e Tecnologia de Produtos Ltda.—CajamarCajamarBrazil
  6. 6.Department of PhysicsFederal University of Piaui—UFPITeresinaBrazil

Personalised recommendations