Advertisement

AAPS PharmSciTech

, Volume 19, Issue 7, pp 3029–3039 | Cite as

Skin Permeation and Oxidative Protection Effect of Soybean Isoflavones from Topical Nanoemulsions—a Comparative Study of Extracts and Pure Compounds

  • Patricia Inês Back
  • Luisa Rodrigues Furtado
  • Marina Cardoso Nemitz
  • Lucélia Albarello Balestrin
  • Flávia Nathiely Silveira Fachel
  • Henrique Mautone Gomes
  • Roselena Silvestri Schuh
  • José Cláudio Moreira
  • Gilsane Lino von Poser
  • Helder Ferreira Teixeira
Research Article
  • 50 Downloads

Abstract

Soybean isoflavone-rich extracts have been considered as promising skin antiaging products due to their antioxidant activity. This study investigates the effect of soybean isoflavone forms on porcine ear skin permeation/retention from topical nanoemulsions and their potential in protecting skin against oxidative damage caused by UVA/UVB light. Soybean non-hydrolyzed (SNHE) and hydrolyzed (SHE) extracts, mainly composed of genistin and genistein, were produced. Nanoemulsions containing SNHE (NESNHE) and SHE (NESHE) were prepared by spontaneous emulsification procedure and yielded monodispersed nanoemulsions. A delay of isoflavone release was observed after extracts incorporation into nanoemulsions when compared to a propyleneglycol dispersion of pure compounds. An increase of isoflavone skin retention from nanoemulsions was also achieved. However, from extracts, a higher amount of genistin (NESNHE) and a lower amount of genistein (NESHE) were detected in the skin in comparison to pure isoflavones. Finally, the protection of porcine ear skin by formulations against UVA/UVB oxidative stress was evaluated. Extract-loaded nanoemulsions offered better skin protection than pure isoflavones. Skin lipids were similarly protected by NESHE and NESNHE, whereas skin proteins were more protected by NESNHE. Overall, nanoemulsions containing isoflavone-rich soybean extracts may be considered a better topical formulation aiming skin protection from UVA/UVB oxidative damage.

KEY WORDS

antioxidant isoflavones nanoemulsions soybean extracts skin permeation/retention 

Notes

Funding Information

The authors want to thank the National Council for Scientific and Technological Development (CNPq) (grant agreement n° 459619/2014-4). H.F.T., G.V.P., and J.C.M are recipients of CNPq research fellowship.

References

  1. 1.
    Kohen R, Gati I. Skin low molecular weight antioxidants and their role in aging and in oxidative stress. Toxicology. 2000;148:149–57.  https://doi.org/10.1016/S0300-483X(00)00206-7.CrossRefPubMedGoogle Scholar
  2. 2.
    Pinnell SR. Cutaneous photodamage, oxidative stress, and topical antioxidant protection. J Am Acad Dermatol. 2003;48(1):1–19.  https://doi.org/10.1067/mjd.2003.16.CrossRefPubMedGoogle Scholar
  3. 3.
    Mazumder ARM, Hongsprabhas P. Genistein as antioxidant and antibrowning agents in in vivo and in vitro: a review. Biomed Pharmacother. 2016;86:379–92.  https://doi.org/10.1016/j.biopha.2016.05.023.CrossRefGoogle Scholar
  4. 4.
    Horáková L. Flavonoids in prevention of diseases with respect to modulation of Ca-pump function. Interdiscip Toxicol. 2011;4(3):114–24.  https://doi.org/10.2478/v10102-011-0019-5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572–84.  https://doi.org/10.1016/S0955-2863(02)00208-5.CrossRefPubMedGoogle Scholar
  6. 6.
    Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74(4):418–25.  https://doi.org/10.1093/ajcn/74.4.418.CrossRefPubMedGoogle Scholar
  7. 7.
    Mitchell JH, Gardner PT, McPhail DB, Morrice PC, Collins AR, Duthie GG. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Arch Biochem Biophys. 1998;360(1):142–8.  https://doi.org/10.1006/abbi.1998.0951.CrossRefPubMedGoogle Scholar
  8. 8.
    Kao TH, Chen BH. Functional components in soybean cake and their effects on antioxidant activity. J Agric Food Chem. 2006;54:7544–55.  https://doi.org/10.1021/jf061586x.CrossRefPubMedGoogle Scholar
  9. 9.
    Huang ZR, Huang CF, Lin YK, Fang JY. In vitro and in vivo evaluation of topical delivery and potential dermal use of soy isoflavones genistein and daidzein. Int J Pharm. 2008;364:36–44.  https://doi.org/10.1016/j.ijpharm.2008.08.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Iovine B, Iannella ML, Gasparri F, Giannini V, Monfrecola G, Bevilacqua MA. A comparative analysis of the photo-protective effects of soy isoflavones in their aglycone and glucoside forms. Int J Mol Sci. 2012;13(12):16444–56.  https://doi.org/10.3390/ijms131216444.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wei H, Saladi R, Lu Y, Wang Y, Palep SR, Moore J, et al. Isoflavone genistein: photoprotection and clinical implications in dermatology. J Nutr. 2003;133(11 Suppl 1):3811S–19S.  https://doi.org/10.1093/jn/133.11.3811S.CrossRefPubMedGoogle Scholar
  12. 12.
    Nemitz MC, Moraes RC, Koester LS, Bassani VL, von Poser GL, Teixeira HF. Bioactive soy isoflavones: extraction and purification procedures, potential dermal use and nanotechnology-based delivery systems. Phytochem Rev. 2015;14:849–69.  https://doi.org/10.1007/s11101-014-9382-0.CrossRefGoogle Scholar
  13. 13.
    Chiu TM, Huang CC, Lin TJ, Fang JY, Wu NL, Huang CFJ. In vitro and in vivo anti-photoaging effects of an isoflavone extract from soybean cake. Ethnopharmacol. 2009;126:108–13.  https://doi.org/10.1016/j.jep.2009.07.039.CrossRefGoogle Scholar
  14. 14.
    Yuan D, Pan Y, Chen Y, Uno T, Zhang S, Kano Y. An improved method for basic hydrolysis of isoflavone malonylglucosides and quality evaluation of Chinese soy materials. Chem Pharm Bull. 2008;56(1):1–6.  https://doi.org/10.1248/cpb.56.1.CrossRefPubMedGoogle Scholar
  15. 15.
    Schmid D, Zülli F, Nissen HP, Prieur H. Penetration and metabolism of isoflavones in human skin. Cosmetics & Toiletries. 2003;118(9):71–4.Google Scholar
  16. 16.
    Waqas MK, Akhtar N, Mustafa R, Jamshaid M, Muhammad H, Khan S, et al. Dermatological and cosmeceutical benefits of Glycine max (soybean) and its active components. Acta Pol Pharm. 2015;72:3–11.PubMedGoogle Scholar
  17. 17.
    Chiang HS, Wu WB, Fang JY, Chen BH, Kao TH, Chen YT, et al. UVB-protective effects of isoflavone extracts from soybean cake in human keratinocytes. Int J Mol Sci. 2007;8(7):651–61.  https://doi.org/10.3390/i8070651.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Lee CH, Yang L, Xu JZ, Yeung SYV, Huang Y, Chen ZY. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 2005;90:735–41.  https://doi.org/10.1016/j.foodchem.2004.04.034.CrossRefGoogle Scholar
  19. 19.
    Nemitz MC, Argenta DF, Bruxel F, Koester LS, von Poser GL, Bassani VL, et al. Carreadores lipídicos de tamanho nanométrico compreendendo fração enriquecida de isoflavonas agliconas da soja, processo de obtenção dos mesmos e formulações compreendendo os mesmos. BR 102015024240-9 A2. Patent deposit date: 09/21/2015.Google Scholar
  20. 20.
    Vargas BA, Bidone J, Oliveira LK, Koester LS, Bassani VL, Texeira HF. Development of topical hydrogels containing genistein-loaded nanoemulsions. J Biomed Nanotechnol. 2012;8:1–7.  https://doi.org/10.1166/jbn.2012.1386.CrossRefGoogle Scholar
  21. 21.
    Nemitz MC, Yatsu FKJ, Bidone J, Koester LS, Bassani VL, Garcia CV, et al. A versatile, stability-indicating and high-throughput ultra-fast liquid chromatography method for the determination of isoflavone aglycones in soybeans, topical formulations, and permeation assays. Talanta. 2015;134:183–93.  https://doi.org/10.1016/j.talanta.2014.10.062.CrossRefPubMedGoogle Scholar
  22. 22.
    ICH S. Validation of analytical procedures: text and methodology Q2 (R1). International Conference on Harmonization, Tech Requir Regist Pharm Hum Use 2005:1–13.Google Scholar
  23. 23.
    Praça FSG, Medina WSG, Eloy JO, Petrilli R, Campos PM, Ascenso A, et al. Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin models. Eur J Pharm Sci. 2018;111:121–32.  https://doi.org/10.1016/j.ejps.2017.09.034.CrossRefPubMedGoogle Scholar
  24. 24.
    Dresch MTK, Rossato SB, Kappel VD, Biegelmeyer R, Hoff MLM, Mayorga P, et al. Optimization and validation of an alternative method to evaluate total reactive antioxidant potential. Anal Biochem. 2009;385(1):107–14.  https://doi.org/10.1016/j.ab.2008.10.036.CrossRefPubMedGoogle Scholar
  25. 25.
    Balestrin LA, Bidone J, Bortolin RC, Moresco K, Moreira JC, Teixeira HF. Protective effect of a hydrogel containing Achyrocline satureioides extract-loaded nanoemulsion against UV-induced skin damage. J Photochem Photobiol B Biol. 2016;163:269–76.  https://doi.org/10.1016/j.jphotobiol.2016.08.039.CrossRefGoogle Scholar
  26. 26.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193(1):265–75.Google Scholar
  27. 27.
    Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 1990;186:421–31.  https://doi.org/10.1016/0076-6879(90)86135-I.CrossRefPubMedGoogle Scholar
  28. 28.
    Levine RL, Garland D, Oliver CN, Amici A, Lenz AG, Ahn BW, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.  https://doi.org/10.1016/0003-2697(89)90077-8.CrossRefPubMedGoogle Scholar
  29. 29.
    Ávila MR, Braccini AL, Albrecht LP, Scapim CA, Mandarino JMG, Bazo GL, et al. Effect of storage period on isoflavone content and physiological quality of conventional and transgenic soybean seeds. Rev Bras Sementes. 2011;33(1):149–61.  https://doi.org/10.1590/s0101-31222011000100017.CrossRefGoogle Scholar
  30. 30.
    Heimler D, Vignolini P, Galardi C, Pinelli P, Romani A. Simple extraction and rapid quantitative analysis of isoflavones in soybean seeds. Chromatographia. 2004;59:361–5.  https://doi.org/10.1365/s10337-003-0162-z.CrossRefGoogle Scholar
  31. 31.
    Rostagno MA, Villares A, Guillamón E, Gárcia-Lafuente A, Martinéz JA. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J Chromatogr A. 2009;1216:2–29.  https://doi.org/10.1016/j.chroma.2008.11.035.CrossRefPubMedGoogle Scholar
  32. 32.
    Nemitz MC, Teixeira HF, von Poser GL. A new approach for the purification of soybean acid extract: simultaneous production of an isoflavone aglycone-rich fraction and a furfural derivative-rich by-product. Ind Crop Prod. 2015;67:414–21.  https://doi.org/10.1016/j.indcrop.2015.01.074.CrossRefGoogle Scholar
  33. 33.
    Toker OS, Dogan M, Ersöz NB, Yilmaz MT. Optimization of the content of 5-hydroxymethylfurfural (HMF) formed in some molasses types: HPLC-DAD analysis to determine effect of different storage time and temperature levels. Ind Crop Prod. 2014;137:137–44.  https://doi.org/10.1016/j.indcrop.2013.05.030.CrossRefGoogle Scholar
  34. 34.
    Nemitz MC, Picada JN, Silva S, Garcia ALH, Papke DKM, Grivicich I, et al. Determination of the main impurities formed after acid hydrolysis of soybean extracts and the in vitro mutagenicity and genotoxicity studies of 5-ethoxymethyl-2-furfural. J Pharm Biomed Anal. 2016;129:427–32.  https://doi.org/10.1016/j.jpba.2016.07.037.CrossRefPubMedGoogle Scholar
  35. 35.
    Zorzi GK, Carvalho ELS, von Poser GL, Teixeira HF. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev Bras. 2015;25(4):426–36.  https://doi.org/10.1016/j.bjp.2015.07.015.CrossRefGoogle Scholar
  36. 36.
    Zorzi GK, Caregnato F, Moreira JCF, Teixeira HF, Carvalho ELS. Antioxidant effect of nanoemulsions containing extract of Achyrocline satureioides (Lam) D.C.—Asteraceae. AAPS PharmSciTech. 2016;17(4):844–50.  https://doi.org/10.1208/s12249-015-0408-8.CrossRefPubMedGoogle Scholar
  37. 37.
    Ribeiro RCA, Barreto SMAG, Ostrosky EA, Rocha-Filho PA, Veríssimo LM, Ferrari M. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent. Molecules. 2015;20(2):2492–09.  https://doi.org/10.3390/molecules20022492.CrossRefPubMedGoogle Scholar
  38. 38.
    Tsai YJ, Chen BH. Preparation of catechin extracts and nanoemulsions from green tea leaf waste and their inhibition effect on prostate cancer cell PC-3. Int J Nanomedicine. 2016;11:1907–26.  https://doi.org/10.2147/IJN.S103759.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ali SM, Yosipovitch G. Skin pH: from basic science to basic skin care. Acta Derm Venereol. 2013;93(3):261–7.  https://doi.org/10.2340/00015555-1531.CrossRefPubMedGoogle Scholar
  40. 40.
    Singhvi G, Singh M. Review: in-vitro drug release characterization models. Int J Pharm Sci Res. 2011;2(1):77–84.Google Scholar
  41. 41.
    Pawankumar G, Shiradkar M. Evaluation of synergistic effect of Chlorophytum borivilianum extract on transdermal delivery of pramipexole with its mechanism of action. Adv Appl Sci Res. 2012;3(1):261–7.  https://doi.org/10.1211/jpp.60.1.004.CrossRefGoogle Scholar
  42. 42.
    Chen F, Li S, Li D, Ding JS. Transdermal behaviors comparisons among Evodia rutaecarpa extracts with different purity of evodiamine and rutaecarpine and the effect of topical formulation in vivo. Fitoterapia. 2012;83:954–60.  https://doi.org/10.1016/j.fitote.2012.04.021.CrossRefPubMedGoogle Scholar
  43. 43.
    Schmid D, Zülli F. Topically applied soy isoflavones increase skin thickness. Cosmetics & Toiletries. 2002;117(6):45–50. Google Scholar
  44. 44.
    Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K. Methods for testing antioxidant activity. Analyst. 2002;127(1):183–98.  https://doi.org/10.1039/b009171p.CrossRefPubMedGoogle Scholar
  45. 45.
    Dalle-Donne I, Aldini G, Carini M, Colombo R, Rossi R, Milzani A. Protein carbonylation, cellular dysfunction, and disease progression. J Cell Mol Med. 2006;10(2):389–406.  https://doi.org/10.1111/j.1582-4934.2006.tb00407.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Pan Y, Tikekarb RV, Nitin N. Effect of antioxidant properties of lecithin emulsifier on oxidative stability of encapsulated bioactive compounds. Int J Pharm. 2013;450:129–37.  https://doi.org/10.1016/j.ijpharm.2013.04.038.CrossRefPubMedGoogle Scholar
  47. 47.
    Morabito K, Shapley NC, Steeley KG, Tripathi A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. J Cosmet Sci. 2011;33:385–90.  https://doi.org/10.1111/j.1468-2494.2011.00654.CrossRefGoogle Scholar
  48. 48.
    Iovine B, Iannella ML, Gasparri F, Monfrecola G, Bevilacqua MA. Synergic effect of genistein and daidzein on UVB-induced DNA damage: an effective photoprotective combination. J Biomed Biotechnol. 2011;2011:1–8.  https://doi.org/10.1155/2011/692846.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Patricia Inês Back
    • 1
  • Luisa Rodrigues Furtado
    • 1
  • Marina Cardoso Nemitz
    • 2
  • Lucélia Albarello Balestrin
    • 1
  • Flávia Nathiely Silveira Fachel
    • 1
  • Henrique Mautone Gomes
    • 3
  • Roselena Silvestri Schuh
    • 1
  • José Cláudio Moreira
    • 3
  • Gilsane Lino von Poser
    • 4
  • Helder Ferreira Teixeira
    • 1
  1. 1.Departamento de Produção e Controle de Medicamentos, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Curso de FarmáciaUniversidade Federal do Rio de JaneiroMacaéBrazil
  3. 3.Departamento de Bioquímica da Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Departamento de Produção de Matéria-Prima, Faculdade de FarmáciaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations