AAPS PharmSciTech

, Volume 19, Issue 7, pp 3199–3209 | Cite as

Preparation and Evaluation of Skin Wound Healing Chitosan-Based Hydrogel Membranes

  • Sarfaraz Ahmad
  • Muhammad Usman MinhasEmail author
  • Mahmood Ahmad
  • Muhammad Sohail
  • Orva Abdullah
  • Syed Faisal Badshah
Research Article


The purpose of the study was to synthesize and characterize a new form of topical membranes as chitosan-based hydrogel membranes for bacterial skin infections. The polymeric membranes were synthesized by modification in free radical solution polymerization technique. High molecular weight (HMW) chitosan polymer was cross-linked with monomer 2-acrylamido-2-methylpropane sulfonic acid (AMPS) through cross-linker N,N-methylenebisacrylamide (MBA). Mupirocin, an antibiotic, was used as model drug. The polymeric membranes were prepared in spherical form that found stable and elastic. Characterization of hydrogel membranes was performed by FTIR, SEM, DSC, TGA, swelling behavior, drug release, irritation study, and ex vivo drug permeation and deposition study. Structural and thermal studies confirmed the formation of new polymeric network with enhanced stability of hydrogel membranes. Permeation flux of drug from optimized formulation through rabbit’s skin assessed by using Franz cell was up to 104.09 μg cm−2 h−1. Furthermore, hydrogel membrane has significant retention of drug in skin up to 2185 μg 1.5 cm−2. Draize patch test confirmed the synthesized hydrogels as non-irritant to skin. The preparation of a topical membrane with improved antibacterial activity within controlled release manner is desirable for the advancement and treatment of skin diseases.


hydrogel membrane mupirocin high molecular weight chitosan topical delivery 



The authors are pleased to acknowledge the Islamia University of Bahawalpur Pakistan for providing the finances and facilities for performing studies.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Rosiak JM, Yoshii F. Hydrogels and their medical applications. Nucl Instrum Methods Phys Res, Sect B. 1999;151(1–4):56–64.CrossRefGoogle Scholar
  2. 2.
    Peppas N, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50(1):27–46.CrossRefGoogle Scholar
  3. 3.
    Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99.CrossRefGoogle Scholar
  4. 4.
    Peppas N, et al. Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng. 2000;2(1):9–29.CrossRefGoogle Scholar
  5. 5.
    Gehrke SH. Synthesis and properties of hydrogels used for drug delivery. Transport processes in pharmaceutical systems. 2000;473–546.Google Scholar
  6. 6.
    Park H, Park K, Shalaby WS. Biodegradable hydrogels for drug delivery. Boca Raton: CRC Press; 2011.Google Scholar
  7. 7.
    Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int J Polym Mater Polym Biomater. 2013;62(7):411–20.CrossRefGoogle Scholar
  8. 8.
    Zhang P, Wang X, Li S, Dai H. Nanocomposite hydrogels with high mechanical strength and high swelling ratio by RAFT polymerization. Int J Polym Mater. 2013;62(1):10–6.CrossRefGoogle Scholar
  9. 9.
    Saez-Martinez V, Atorrasagasti G, Olalde B, Madarieta I, Morin F, Garagorri N. Fabrication and characterization of macroporous poly(ethylene glycol) hydrogels generated by several types of porogens. Int J Polym Mater Polym Biomater. 2013;62(9):502–8.CrossRefGoogle Scholar
  10. 10.
    Roy N, Saha N, Kitano T, Lehocky M, Vitkova E, Saha P. Significant characteristics of medical-grade polymer sheets and their efficiency in protecting hydrogel wound dressings: a soft polymeric biomaterial. Int J Polym Mater. 2012;61(1):72–88.CrossRefGoogle Scholar
  11. 11.
    Pappa KA. The clinical development of mupirocin. J Am Acad Dermatol. 1990;22(5):873–9.CrossRefGoogle Scholar
  12. 12.
    Ward A, Campoli-Richards DM. Mupirocin. Drugs. 1986;32(5):425–44.CrossRefGoogle Scholar
  13. 13.
    Conly JM, Johnston BL. Mupirocin—are we in danger of losing it? Can J Infect Dis. 2002;13(3):157–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Parenti M, Hatfield S, Leyden J. Mupirocin: a topical antibiotic with a unique structure and mechanism of action. Clin Pharm. 1987;6(10):761–70.PubMedGoogle Scholar
  15. 15.
    Gisby J, Bryant J. Efficacy of a new cream formulation of mupirocin: comparison with oral and topical agents in experimental skin infections. Antimicrob Agents Chemother. 2000;44(2):255–60.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Carafa M, Santucci E, Lucania G. Lidocaine-loaded non-ionic surfactant vesicles: characterization and in vitro permeation studies. Int J Pharm. 2002;231(1):21–32.CrossRefGoogle Scholar
  17. 17.
    Tan HS, Pfister WR. Pressure-sensitive adhesives for transdermal drug delivery systems. Pharm Sci Technolo Today. 1999;2(2):60–9.CrossRefGoogle Scholar
  18. 18.
    Dong Y, Qiu W, Ruan Y, Wu Y, Wang M, & Xu C. Influence of molecular weight on critical concentration of chitosan/formic acid liquid crystalline solution. Polym J. 2001;33(5):387.CrossRefGoogle Scholar
  19. 19.
    Deng C-M, He LZ, Zhao M, Yang D, Liu Y. Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydr Polym. 2007;69(3):583–9.CrossRefGoogle Scholar
  20. 20.
    Alsarra IA. Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol. 2009;45(1):16–21.CrossRefGoogle Scholar
  21. 21.
    Alsbjörn B. In search of an ideal skin substitute. Scand J Plast Reconstr Surg. 1984;18(1):127–33.CrossRefGoogle Scholar
  22. 22.
    Sorlier P, Viton C, Domard A. Relation between solution properties and degree of acetylation of chitosan: role of aging. Biomacromolecules. 2002;3(6):1336–42.CrossRefGoogle Scholar
  23. 23.
    Genta I, Perugini P, Pavanetto F. Different molecular weight chitosan microspheres: influence on drug loading and drug release. Drug Dev Ind Pharm. 1998;24(8):779–84.CrossRefGoogle Scholar
  24. 24.
    Durmaz S, Okay O. Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization. Polymer. 2000;41(10):3693–704.CrossRefGoogle Scholar
  25. 25.
    Park K, Shalaby W, Park H. Biodegradable hydrogels for drug delivery. Lancaster: Technomic; 1993.Google Scholar
  26. 26.
    Bageshwar DV, et al. Quantitative estimation of mupirocin calcium from pharmaceutical ointment formulation by UV spectrophotometry. Int J Pharm Pharm Sci. 2010;2(3):86–8.Google Scholar
  27. 27.
    Sohail M, Ahmad M, Minhas MU, Ali L, Khalid I, Rashid H. Controlled delivery of valsartan by cross-linked polymeric matrices: synthesis, in vitro and in vivo evaluation. Int J Pharm. 2015;487(1):110–9.CrossRefGoogle Scholar
  28. 28.
    Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396(1):153–66.CrossRefGoogle Scholar
  29. 29.
    Andrady AL, Torikai A, Kobatake T. Spectral sensitivity of chitosan photodegradation. J Appl Polym Sci. 1996;62(9):1465–71.CrossRefGoogle Scholar
  30. 30.
    Gad Y. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat Phys Chem. 2008;77(9):1101–7.CrossRefGoogle Scholar
  31. 31.
    Zheng Y, Wang A. Removal of heavy metals using polyvinyl alcohol semi-IPN poly(acrylic acid)/tourmaline composite optimized with response surface methodology. Chem Eng J. 2010;162(1):186–93.CrossRefGoogle Scholar
  32. 32.
    Rivas BL, Castro A. Preparation and adsorption properties of resins containing amine, sulfonic acid, and carboxylic acid moieties. J Appl Polym Sci. 2003;90(3):700–5.CrossRefGoogle Scholar
  33. 33.
    Bojarska J, Maniukiewicz W, Fruziński A, Jędrzejczyk M, Wojciechowski J, Krawczyk H. Structural and spectroscopic characterization and Hirshfeld surface analysis of major component of antibiotic mupirocin—pseudomonic acid A. J Mol Struct. 2014;1076:126–35.CrossRefGoogle Scholar
  34. 34.
    Perumal S, Kumar Ramadass S, Madhan B. Sol–gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing. Eur J Pharm Sci. 2014;52:26–33.CrossRefGoogle Scholar
  35. 35.
    Bao Y, Ma J, Li N. Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly(AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym. 2011;84(1):76–82.CrossRefGoogle Scholar
  36. 36.
    Shanmugasundaram N, Ravichandran P, Neelakanta Reddy P, Ramamurty N, Pal S, Panduranga Rao K. Collagen–chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials. 2001;22(14):1943–51.CrossRefGoogle Scholar
  37. 37.
    Mahmood A, Ahmad M, Sarfraz RM, Minhas MU. β-CD based hydrogel microparticulate system to improve the solubility of acyclovir: optimization through in-vitro, in-vivo and toxicological evaluation. Journal of Drug Delivery Science and Technology. 2016;36:75–88.CrossRefGoogle Scholar
  38. 38.
    Kabiri K, Mirzadeh H, Zohuriaan-Mehr MJ, Daliri M. Chitosan-modified nanoclay–poly(AMPS) nanocomposite hydrogels with improved gel strength. Polym Int. 2009;58(11):1252–9.CrossRefGoogle Scholar
  39. 39.
    Sreenivasan K. Thermal stability studies of some chitosan metal ion complexes using differential scanning calorimetry. Polym Degrad Stab. 1996;52(1):85–7.CrossRefGoogle Scholar
  40. 40.
    Tirkistani FA. Thermal analysis of chitosan modified by cyclic oxygenated compounds. Polym Degrad Stab. 1998;61(1):161–4.CrossRefGoogle Scholar
  41. 41.
    Tirkistani FA. Thermal analysis of some chitosan Schiff bases. Polymer degradation and stability. 1998;60(1):67–70.CrossRefGoogle Scholar
  42. 42.
    Amrutiya N, Bajaj A, Madan M. Development of microsponges for topical delivery of mupirocin. AAPS PharmSciTech. 2009;10(2):402–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schneider LA, Korber A, Grabbe S, Dissemond J. Influence of pH on wound-healing: a new perspective for wound-therapy? Arch Dermatol Res. 2007;298(9):413–20.CrossRefGoogle Scholar
  44. 44.
    Tsai H-S, Wang Y-Z. Properties of hydrophilic chitosan network membranes by introducing binary crosslink agents. Polym Bull. 2008;60(1):103–13.CrossRefGoogle Scholar
  45. 45.
    Varaprasad K, Reddy NN, Ravindra S, Vimala K, Raju KM. Synthesis and characterizations of macroporous poly(acrylamide-2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels for in vitro drug release of ranitidine hydrochloride. Int J Polym Mater. 2011;60(7):490–503.CrossRefGoogle Scholar
  46. 46.
    Varaprasad K, et al. Biodegradable chitosan hydrogels for in vitro drug release studies of 5-flurouracil an anticancer drug. J Polym Environ. 2012;20(2):573–82.CrossRefGoogle Scholar
  47. 47.
    Cerchiara T, Luppi B, Bigucci F, Orienti I, Zecchi V. Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs. J Pharm Pharmacol. 2002;54(11):1453–9.CrossRefGoogle Scholar
  48. 48.
    Yetimoğlu EK, Kahraman MV, Ercan Ö, Akdemir ZS, Apohan NK. N-vinylpyrrolidone/acrylic acid/2-acrylamido-2-methylpropane sulfonic acid based hydrogels: synthesis, characterization and their application in the removal of heavy metals. React Funct Polym. 2007;67(5):451–60.CrossRefGoogle Scholar
  49. 49.
    Saikia A, Aggarwal S, Mandal U. Preparation and controlled drug release characteristics of thermoresponsive PEG/poly(NIPAM-co-AMPS) hydrogels. Int J Polym Mater. 2013;62(1):39–44.CrossRefGoogle Scholar
  50. 50.
    Mahdavinia G, et al. Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur Polym J. 2004;40(7):1399–407.CrossRefGoogle Scholar
  51. 51.
    Draize JH, Woodard G, Calvery HO. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Ther. 1944;82(3):377–90.Google Scholar
  52. 52.
    Şenel S, İkinci G, Kaş S, Yousefi-Rad A, Sargon MF, Hıncal AA. Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm. 2000;193(2):197–203.CrossRefGoogle Scholar
  53. 53.
    Bodmeier R, Paeratakul O. Drug release from laminated polymeric films prepared from aqueous latexes. J Pharm Sci. 1990;79(1):32–6.CrossRefGoogle Scholar
  54. 54.
    Baviskar DT, Parik VB, Jain DJ. Development of matrix-type transdermal delivery of lornoxicam: in vitro evaluation and pharmacodynamic and pharmacokinetic studies in albino rats. PDA J Pharm Sci Technol. 2013;67(1):9–22.CrossRefGoogle Scholar
  55. 55.
    Dorrani M, Kaul M, Parhi A, LaVoie EJ, Pilch DS, Michniak-Kohn B. TXA497 as a topical antibacterial agent: comparative antistaphylococcal, skin deposition, and skin permeation studies with mupirocin. Int J Pharm. 2014;476(1):199–204.CrossRefGoogle Scholar
  56. 56.
    Caon T, Porto LC, Granada A, Tagliari MP, Silva MAS, Simões CMO, et al. Chitosan-decorated polystyrene-b-poly(acrylic acid) polymersomes as novel carriers for topical delivery of finasteride. Eur J Pharm Sci. 2014;52:165–72.CrossRefGoogle Scholar
  57. 57.
    Rodríguez-Cruz IM, Merino V, Merino M, Díez O, Nácher A, Quintanar-Guerrero D. Polymeric nanospheres as strategy to increase the amount of triclosan retained in the skin: passive diffusion vs. iontophoresis. J Microencapsul. 2013;30(1):72–80.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Sarfaraz Ahmad
    • 1
  • Muhammad Usman Minhas
    • 1
    Email author
  • Mahmood Ahmad
    • 1
  • Muhammad Sohail
    • 2
  • Orva Abdullah
    • 1
  • Syed Faisal Badshah
    • 1
  1. 1.Faculty of Pharmacy and Alternative MedicineThe Islamia University of BahawalpurBahawalpurPakistan
  2. 2.Department of PharmacyCOMSATS Institute of Information TechnologyAbbottabadPakistan

Personalised recommendations