AAPS PharmSciTech

, Volume 19, Issue 7, pp 2961–2970 | Cite as

Labrasol-Enriched Nanoliposomal Formulation: Novel Approach to Improve Oral Absorption of Water-Insoluble Drug, Carvedilol

  • Samaneh Ghassemi
  • Azadeh HaeriEmail author
  • Soraya Shahhosseini
  • Simin DadashzadehEmail author
Research Article


The purpose of the current study was to develop a novel liposomal formulation to improve the oral bioavailability of carvedilol, a Biopharmaceutics Classification System class II with poor aqueous solubility and extensive presystemic metabolism. Conventional and various surfactant-enriched carvedilol-loaded liposomes were prepared by thin film hydration technique and physicochemical properties of liposomes (including size, encapsulation efficiency, release behavior, and morphology) were evaluated. To assess the oral bioavailability, in vivo studies were carried out in eight groups of male Wistar rats (n = 6) and the drug plasma concentration was determined. Conventional and surfactant containing liposomes showed average particle size of 76–104 nm with a narrow size distribution, high encapsulation efficiency (80%≤) and a sustained release profile in simulated intestinal fluid. Compared to the suspension, conventional and Labrasol containing liposomes significantly improved the oral bioavailability and peak plasma concentration of carvedilol. Biocompatibility studies (cell cytotoxicity and histopathological analyses) showed that the enhancing effect might be achieved without any apparent toxicity in the intestine. Decreased oral absorption of carvedilol nanovesicles by using a chylomicron flow blocker indicated contribution of lymphatic transport in nanocapsules absorption. The results reported the successful development of biocompatible Labrasol-enriched carvedilol nanoliposomal formulation with a significant oral enhancement capability.

Graphical Abstract


carvedilol nanoliposomes surfactants Labrasol oral bioavailability rat 


Funding information

This study was supported by a grant from Shahid Beheshti University of Medical Sciences.

Compliance with Ethical Standards

Conflict of Interest

The authors report no conflicts of interest.

Supplementary material

12249_2018_1118_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)


  1. 1.
    Alam MA, Al-Jenoobi FI, Al-Mohizea AM, Ali R. Understanding and managing oral bioavailability: physiological concepts and patents. Recent Pat Anticancer Drug Discov. 2015;10(1):87–96.CrossRefGoogle Scholar
  2. 2.
    Pathak K, Raghuvanshi S. Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet. 2015;54(4):325–57.CrossRefGoogle Scholar
  3. 3.
    Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm. 2011;420(1):1–10.CrossRefGoogle Scholar
  4. 4.
    Chang D, Ma Y, Cao G, Wang J, Zhang X, Feng J, et al. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation. Artif Cells Nanomed Biotechnol 2017;1–7.Google Scholar
  5. 5.
    Liu Y, Tee JK, Chiu GN. Dendrimers in oral drug delivery application: current explorations, toxicity issues and strategies for improvement. Curr Pharm Des. 2015;21(19):2629–42.CrossRefGoogle Scholar
  6. 6.
    Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomedicine. 2015;10:4797–813.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Li J, Jiang Q, Deng P, Chen Q, Yu M, Shang J, et al. The formation of a host-guest inclusion complex system between beta-cyclodextrin and baicalin and its dissolution characteristics. J Pharm Pharmacol. 2017;69(6):663–74.CrossRefGoogle Scholar
  8. 8.
    Liu QY, Zhang ZH, Jin X, Jiang YR, Jia XB. Enhanced dissolution and oral bioavailability of tanshinone IIA base by solid dispersion system with low-molecular-weight chitosan. J Pharm Pharmacol. 2013;65(6):839–46.CrossRefGoogle Scholar
  9. 9.
    Daeihamed M, Haeri A, Ostad SN, Akhlaghi MF, Dadashzadeh S. Doxorubicin-loaded liposomes: enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine (London). 2017;12(10):1187–202.CrossRefGoogle Scholar
  10. 10.
    Daeihamed M, Dadashzadeh S, Haeri A, Akhlaghi MF. Potential of liposomes for enhancement of oral drug absorption. Curr Drug Deliv. 2017;14(2):289–303.PubMedGoogle Scholar
  11. 11.
    Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):334–49.CrossRefGoogle Scholar
  12. 12.
    Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.CrossRefGoogle Scholar
  13. 13.
    Fricker G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H, et al. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27(8):1469–86.CrossRefGoogle Scholar
  14. 14.
    Daraee H, Etemadi A, Kouhi M, Alimirzalu S, Akbarzadeh A. Application of liposomes in medicine and drug delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):381–91.CrossRefGoogle Scholar
  15. 15.
    Wei Y, Guo J, Zheng X, Wu J, Zhou Y, Yu Y, et al. Preparation, pharmacokinetics and biodistribution of baicalin-loaded liposomes. Int J Nanomedicine. 2014;9:3623–30.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Shao Y, Yang L, Han HK. TPGS-chitosome as an effective oral delivery system for improving the bioavailability of coenzyme Q10. Eur J Pharm Biopharm. 2015;89:339–46.CrossRefGoogle Scholar
  17. 17.
    Rao S, Tan A, Thomas N, Prestidge CA. Perspective and potential of oral lipid-based delivery to optimize pharmacological therapies against cardiovascular diseases. J Control Release. 2014;193(Supplement C):174–87.CrossRefGoogle Scholar
  18. 18.
    Ettehad D, Emdin CA, Kiran A, Anderson SG, Callender T, Emberson J, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387(10022):957–67.CrossRefGoogle Scholar
  19. 19.
    Morgan T. Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin Pharmacokinet. 1994;26(5):335–46.CrossRefGoogle Scholar
  20. 20.
    Chakraborty S, Shukla D, Mishra B, Singh S. Clinical updates on carvedilol: a first choice beta-blocker in the treatment of cardiovascular diseases. Expert Opin Drug Metab Toxicol. 2010;6(2):237–50.CrossRefGoogle Scholar
  21. 21.
    Guideline ICH. Validation of analytical procedures: text and methodology. Q2 (R1). 2005;1.Google Scholar
  22. 22.
    Lind ML, Jacobsen J, Holm R, Mullertz A. Intestinal lymphatic transport of halofantrine in rats assessed using a chylomicron flow blocking approach: the influence of polysorbate 60 and 80. Eur J Pharm Sci. 2008;35(3):211–8.CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Huo M, Zhou J, Xie S. PKSolver: an add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Methods Prog Biomed. 2010;99(3):306–14.CrossRefGoogle Scholar
  24. 24.
    Thwala LN, Preat V, Csaba NS. Emerging delivery platforms for mucosal administration of biopharmaceuticals: a critical update on nasal, pulmonary and oral routes. Expert Opin Drug Deliv. 2017;14(1):23–36.CrossRefGoogle Scholar
  25. 25.
    Mazzaferro S, Bouchemal K, Ponchel G. Oral delivery of anticancer drugs I: general considerations. Drug Discov Today. 2013;18(1–2):25–34.CrossRefGoogle Scholar
  26. 26.
    Zhou Y, Ning Q, Yu DN, Li WG, Deng J. Improved oral bioavailability of breviscapine via a Pluronic P85-modified liposomal delivery system. J Pharm Pharmacol. 2014;66(7):903–11.CrossRefGoogle Scholar
  27. 27.
    Huang YB, Tsai MJ, Wu PC, Tsai YH, Wu YH, Fang JY. Elastic liposomes as carriers for oral delivery and the brain distribution of (+)-catechin. J Drug Target. 2011;19(8):709–18.CrossRefGoogle Scholar
  28. 28.
    Packer M, Fowler MB, Roecker EB, Coats AJ, Katus HA, Krum H, et al. Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation. 2002;106(17):2194–9.CrossRefGoogle Scholar
  29. 29.
    Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006;20(3):273–82.CrossRefGoogle Scholar
  30. 30.
    Bart J, Dijkers EC, Wegman TD, de Vries EG, van der Graaf WT, Groen HJ, et al. New positron emission tomography tracer [(11)C]carvedilol reveals P-glycoprotein modulation kinetics. Br J Pharmacol. 2005;145(8):1045–51.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Netsomboon K, Laffleur F, Suchaoin W, Bernkop-Schnurch A. Novel in vitro transport method for screening the reversibility of P-glycoprotein inhibitors. Eur J Pharm Biopharm. 2016;100:9–14.CrossRefGoogle Scholar
  32. 32.
    Yu H, Hu YQ, Ip FC, Zuo Z, Han YF, Ip NY. Intestinal transport of bis(12)-hupyridone in Caco-2 cells and its improved permeability by the surfactant Brij-35. Biopharm Drug Dispos. 2011;32(3):140–50.CrossRefGoogle Scholar
  33. 33.
    Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49(2):175–86.CrossRefGoogle Scholar
  34. 34.
    Dubray O, Jannin V, Demarne F, Pellequer Y, Lamprecht A, Beduneau A. In-vitro investigation regarding the effects of Gelucire(R) 44/14 and Labrasol(R) ALF on the secretory intestinal transport of P-gp substrates. Int J Pharm. 2016;515(1–2):293–9.CrossRefGoogle Scholar
  35. 35.
    Ma L, Wei Y, Zhou Y, Ma X, Wu X. Effects of Pluronic F68 and Labrasol on the intestinal absorption and pharmacokinetics of rifampicin in rats. Arch Pharm Res. 2011;34(11):1939–43.CrossRefGoogle Scholar
  36. 36.
    Mudra DR, Borchardt RT. Absorption barriers in the rat intestinal mucosa. 3: effects of polyethoxylated solubilizing agents on drug permeation and metabolism. J Pharm Sci. 2010;99(2):1016–27.CrossRefGoogle Scholar
  37. 37.
    da Silva ME, Meirelles NC. Interaction of non-ionic surfactants with hepatic CYP in Prochilodus scrofa. Toxicol in Vitro. 2004;18(6):859–67.CrossRefGoogle Scholar
  38. 38.
    Christiansen A, Backensfeld T, Denner K, Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur J Pharm Biopharm. 2011;78(1):166–72.CrossRefGoogle Scholar
  39. 39.
    Iqbal J, Sakloetsakun D, Bernkop-Schnurch A. Thiomers: inhibition of cytochrome P450 activity. Eur J Pharm Biopharm. 2011;78(3):361–5.CrossRefGoogle Scholar
  40. 40.
    Cheng HY, Randall CS, Holl WW, Constantinides PP, Yue TL, Feuerstein GZ. Carvedilol-liposome interaction: evidence for strong association with the hydrophobic region of the lipid bilayers. Biochim Biophys Acta. 1996;1284(1):20–8.CrossRefGoogle Scholar
  41. 41.
    Niu M, Lu Y, Hovgaard L, Guan P, Tan Y, Lian R, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm. 2012;81(2):265–72.CrossRefGoogle Scholar
  42. 42.
    Desai J, Thakkar H. Effect of particle size on oral bioavailability of darunavir-loaded solid lipid nanoparticles. J Microencapsul. 2016;33(7):669–78.CrossRefGoogle Scholar
  43. 43.
    Stimac A, Segota S, Dutour Sikiric M, Ribic R, Frkanec L, Svetlicic V, et al. Surface modified liposomes by mannosylated conjugates anchored via the adamantyl moiety in the lipid bilayer. Biochim Biophys Acta. 2012;1818(9):2252–9.CrossRefGoogle Scholar
  44. 44.
    Jacquot A, Francius G, Razafitianamaharavo A, Dehghani F, Tamayol A, Linder M, et al. Morphological and physical analysis of natural phospholipids-based biomembranes. PLoS One. 2014;9(9):e107435.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Liang X, Mao G, Ng KY. Effect of chain lengths of PEO-PPO-PEO on small unilamellar liposome morphology and stability: an AFM investigation. J Colloid Interface Sci. 2005;285(1):360–72.CrossRefGoogle Scholar
  46. 46.
    Shargel L, Andrew B, Wu-Pong S. Applied biopharmaceutics & pharmacokinetics. New York: McGraw-Hill; 2005.Google Scholar
  47. 47.
    Bajelan E, Haeri A, Vali AM, Ostad SN, Dadashzadeh S. Co-delivery of doxorubicin and PSC 833 (Valspodar) by stealth nanoliposomes for efficient overcoming of multidrug resistance. J Pharm Pharm Sci. 2012;15(4):568–82.CrossRefGoogle Scholar
  48. 48.
    Zhang Y, Zhang H, Che E, Zhang L, Han J, Yang Y, et al. Development of novel mesoporous nanomatrix-supported lipid bilayers for oral sustained delivery of the water-insoluble drug, lovastatin. Colloids Surf B: Biointerfaces. 2015;128:77–85.CrossRefGoogle Scholar
  49. 49.
    Sangsen Y, Wiwattanawongsa K, Likhitwitayawuid K, Sritularak B, Wiwattanapatapee R. Modification of oral absorption of oxyresveratrol using lipid based nanoparticles. Colloids Surf B: Biointerfaces. 2015;131:182–90.CrossRefGoogle Scholar
  50. 50.
    Rama Prasad YV, Minamimoto T, Yoshikawa Y, Shibata N, Mori S, Matsuura A, et al. In situ intestinal absorption studies on low molecular weight heparin in rats using labrasol as absorption enhancer. Int J Pharm. 2004;271(1–2):225–32.CrossRefGoogle Scholar
  51. 51.
    Aggarwal N, Goindi S, Mehta SD. Preparation and evaluation of dermal delivery system of griseofulvin containing vitamin E-TPGS as penetration enhancer. AAPS PharmSciTech. 2012;13(1):67–74.CrossRefGoogle Scholar
  52. 52.
    Siram K, Chellan VR, Natarajan T, Krishnamoorthy B, Mohamed Ebrahim HR, Karanam V, et al. Solid lipid nanoparticles of diethylcarbamazine citrate for enhanced delivery to the lymphatics: in vitro and in vivo evaluation. Expert Opin Drug Deliv. 2014;11(9):1351–65.CrossRefGoogle Scholar
  53. 53.
    Cai S, Yang Q, Bagby TR, Forrest ML. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Adv Drug Deliv Rev. 2011;63(10–11):901–8.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhou A, Lu T, Wang L, Lu C, Wang L, Wan M, et al. Lymphatic transport of puerarin occurs after oral administration of different lipid-based formulations to unconscious lymph duct-cannulated rats. Pharm Dev Technol. 2014;19(6):743–7.CrossRefGoogle Scholar
  55. 55.
    Fu Q, Sun J, Ai X, Zhang P, Li M, Wang Y, et al. Nimodipine nanocrystals for oral bioavailability improvement: role of mesenteric lymph transport in the oral absorption. Int J Pharm. 2013;448(1):290–7.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Department of Pharmaceutics, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of Pharmaceutical Chemistry, School of PharmacyShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Pharmaceutical Sciences Research CenterShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations