AAPS PharmSciTech

, Volume 19, Issue 7, pp 2971–2989 | Cite as

Development and Evaluation of Stimuli-Responsive Chimeric Nanostructures

  • Nikolaos Naziris
  • Natassa Pippa
  • Dimitris Stellas
  • Varvara Chrysostomou
  • Stergios Pispas
  • Costas DemetzosEmail author
  • Marcin Libera
  • Barbara Trzebicka
Research Article


Chimeric/mixed stimuli-responsive nanocarriers are promising agents for therapeutic and diagnostic applications, as well as in the combinatorial field of theranostics. Herein, we designed chimeric nanosystems, composed of natural phospholipid and pH-sensitive amphiphilic diblock copolymer, in different molar ratios and assessed the polymer lyotropic effect on their properties. Initially, polymer-grafted bilayers were evaluated for their thermotropic behavior by thermal analysis. Chimeric liposomes were prepared through thin-film hydration and the obtained vesicles were studied by light scattering techniques, to measure their physicochemical characteristics and colloidal stability, as well as by imaging techniques, to elucidate their global and membrane morphology. Finally, in vitro screening of the systems’ toxicity was held. The copolymer effect on the membrane phase transition strongly depended on the pH of the surrounding environment. Chimeric nanoparticles were around and above 100 nm, while electron microscopy revealed occasional morphology diversity, probably affecting the toxicity of the systems. The latter was assessed to be tolerable, while dependent on the nanosystems’ material concentration, polymer concentration, and polymer composition. All experiments suggested that the thermodynamic and biophysical properties of the nanosystems are copolymer-composition- and concentration-dependent, since different amounts of incorporated polymer would produce divergent effects on the lyotropic liquid crystal membrane. Certain chimeric systems can be exploited as advanced drug delivery nanosystems, based on their overall promising profiles.


chimeric nanosystems amphiphilic biomaterials lyotropism pH-responsive biophysics 


Funding Information

This research has been financially supported by the General Secretariat for Research and Technology (GSRT) and the Hellenic Foundation for Research and Innovation (HFRI) (Scholarship Code: 392).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

12249_2018_1112_MOESM1_ESM.docx (202 kb)
ESM 1 The stability evaluation of polydispersity, as well as diameters and wall dimensions extracted by cryo-TEM for the prepared chimeric nanosystems are provided in the supplementary material section. (DOCX 201 kb)


  1. 1.
    Demetzos C, Pippa N. Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv. 2014;21(4):250–7.CrossRefGoogle Scholar
  2. 2.
    Wang K, Huang Q, Qiu F, Sui M. Non-viral delivery systems for the application in p53 cancer gene therapy. Curr Med Chem. 2015;22(35):4118–36.CrossRefGoogle Scholar
  3. 3.
    Pippa N, Stellas D, Skandalis A, Pispas S, Demetzos C, Libera M, et al. Chimeric lipid/block copolymer nanovesicles: physico-chemical and bio-compatibility evaluation. Eur J Pharm Biopharm. 2016;107:295–309.CrossRefGoogle Scholar
  4. 4.
    Pippa N, Gardikis K, Pispas S, Demetzos C. The physicochemical/thermodynamic balance of advanced drug liposomal delivery systems. J Therm Anal Calorim. 2014;116(1):99–105.CrossRefGoogle Scholar
  5. 5.
    Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Br J Pharmacol. 2016;173(6):970–9.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Xu H, Paxton JW, Wu Z. Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated liposomes with post-insertion technique using gemcitabine as a model drug. Pharm Res. 2015;32(7):2428–38.CrossRefGoogle Scholar
  7. 7.
    Felber AE, Dufresne MH, Leroux JC. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv Drug Deliv Rev. 2012;64(11):979–92.CrossRefGoogle Scholar
  8. 8.
    Kanamala M, Wilson WR, Yang M, Palmer BD, Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials. 2016;85:152–67.CrossRefGoogle Scholar
  9. 9.
    Li Z, Fan Z, Xu Y, Lo W, Wang X, Niu H, et al. pH and thermal sensitive hydrogels as stem cell carriers for cardiac therapy. ACS Appl Mater Interfaces. 2016;8(17):10752–60.CrossRefGoogle Scholar
  10. 10.
    Fan Z, Fu M, Xu Z, Zhang B, Li Z, Li H, et al. Sustained release of a peptide-based matrix metalloproteinase-2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following myocardial infarction. Biomacromolecules. 2017;18(9):2820–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fan Z, Xu Z, Niu H, Gao N, Guan Y, Li C, et al. An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Sci Rep. 2018;8(1):1371.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Naziris N, Pippa N, Pispas S, Demetzos C. Stimuli-responsive drug delivery nanosystems: from bench to clinic. Curr Nanomed. 2016;6(3):1–20.CrossRefGoogle Scholar
  13. 13.
    Delogu F. Thermodynamics on the nanoscale. J Phys Chem B. 2005;109:21938–41.CrossRefGoogle Scholar
  14. 14.
    Dao TPT, Fernandes F, Er-Rafik M, Salva R, Schmutz M, Brûlet A, et al. Phase separation and nanodomain formation in hybrid polymer/lipid vesicles. ACS Macro Lett. 2015;4:182–6.CrossRefGoogle Scholar
  15. 15.
    Samsonov VM, Sdobnyakov NY, Bazulev AN. On thermodynamic stability conditions for nanosized particles. Surf Sci. 2003;532–535:526–30.CrossRefGoogle Scholar
  16. 16.
    Pippa N, Pispas S, Demetzos C. The metastable phases as modulators of biophysical behavior of liposomal membranes. J Therm Anal Calorim. 2015;120(1):937–45.CrossRefGoogle Scholar
  17. 17.
    Demetzos C. Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS PharmSciTech. 2015;16(3):491–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tribet C, Vial F. Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes. Soft Matter. 2008;4:68–81.CrossRefGoogle Scholar
  19. 19.
    Samsonova O, Pfeiffer C, Hellmund M, Merkel OM, Kissel T. Low molecular weight pDMAEMA-block-pHEMA block-copolymers synthesized via RAFT-polymerization: potential non-viral gene delivery agents? Polymer. 2011;3(2):693–718.CrossRefGoogle Scholar
  20. 20.
    Zengin A, Karakose G, Caykara T. Poly(2-(dimethylamino)ethyl methacrylate) brushes fabricated by surface-mediated RAFT polymerization and their response to pH. Eur Polym J. 2013;49(10):3350–8.CrossRefGoogle Scholar
  21. 21.
    Wei X, Cohen R, Barenholz Y. Insights into composition/structure/function relationships of Doxil® gained from “high-sensitivity” differential scanning calorimetry. Eur J Pharm Biopharm. 2016;104:260–70.CrossRefGoogle Scholar
  22. 22.
    Cheng Z, Elias DR, Kamat NP, Johnston ED, Poloukhtine A, Popik V, et al. Improved tumor targeting of polymer-based nanovesicles using polymer-lipid blends. Bioconjug Chem. 2011;22(10):2021–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chrysostomou V, Pispas S. Stimuli-responsive amphiphilic PDMAEMA-b-PLMA copolymers and their cationic and zwitterionic analogs. J Polym Sci A Polym Chem. 2018;56(6):598–610.CrossRefGoogle Scholar
  24. 24.
    Pippa N, Deli E, Mentzali E, Pispas S, Demetzos C. PEO-b-PCL grafted DPPC liposomes: physicochemical characterization and stability studies of novel bio-inspired advanced drug delivery nano systems (aDDnSs). J Nanosci Nanotechnol. 2014;14:5676–81.CrossRefGoogle Scholar
  25. 25.
    Galani A, Tsitsias V, Stellas D, Psycharis V, Raptopoulou CP, Karaliota A. Two novel compounds of vanadium and molybdenum with carnitine exhibiting potential pharmacological use. J Inorg Biochem. 2014;142(C):109–17.PubMedGoogle Scholar
  26. 26.
    Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998;1376:91–145.CrossRefGoogle Scholar
  27. 27.
    Kitayama H, Takechi Y, Tamai N, Matsuki H, Yomota C, Saito H. Thermotropic phase behavior of hydrogenated soybean phosphatidylcholine-cholesterol binary liposome membrane. Chem Pharm Bull (Tokyo). 2014;62(1):58–63.CrossRefGoogle Scholar
  28. 28.
    Matsingou C, Hatziantoniou S, Georgopoulos A, Dimas K, Terzis A, Demetzos C. Labdane-type diterpenes: thermal effects on phospholipid bilayers, incorporation into liposomes and biological activity. Chem Phys Lipids. 2005;138(1–2):1–11.CrossRefGoogle Scholar
  29. 29.
    Matsingou C, Demetzos C. Calorimetric study on the induction of interdigitated phase in hydrated DPPC bilayers by bioactive labdanes and correlation to their liposome stability: the role of chemical structure. Chem Phys Lipids. 2007;145(1):45–62.CrossRefGoogle Scholar
  30. 30.
    Naziris N, Pippa N, Chrysostomou V, Pispas S, Demetzos C, Libera M, et al. Morphological diversity of block copolymer/lipid chimeric nanostructures. J Nanopart Res. 2017;19(10):347–57.CrossRefGoogle Scholar
  31. 31.
    Takechi-Haraya Y, Sakai-Kato K, Goda Y. Membrane rigidity determined by atomic force microscopy is a parameter of the permeability of liposomal membranes to the hydrophilic compound calcein. AAPS PharmSciTech. 2017;18(5):1887–93.CrossRefGoogle Scholar
  32. 32.
    Naziris N, Pippa N, Meristoudi A, Pispas S, Demetzos C. Design and development of pH-responsive HSPC:C12H25-PAA chimeric liposomes. J Liposome Res. 2017;27(2):108–17.CrossRefGoogle Scholar
  33. 33.
    Sun X, Jiang G, Wang Y, Xu Y. Synthesis and drug release properties of novel pH- and temperature-sensitive copolymers based on a hyperbranched polyether core. Colloid Polym Sci. 2011;289:677–84.CrossRefGoogle Scholar
  34. 34.
    Attwood D, Florence AT. Physical pharmacy. London: Pharmaceutical Press; 2008.Google Scholar
  35. 35.
    Winzen S, Bernhardt M, Schaeffel D, Koch A, Kappl M, Koynov K, et al. Submicron hybrid vesicles consisting of polymer-lipid and polymer-cholesterol blends. Soft Matter. 2013;9(25):5883–90.CrossRefGoogle Scholar
  36. 36.
    Kuntsche J, Horst JC, Bunjes H. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int J Pharm. 2011;417(1–2):120–37.CrossRefGoogle Scholar
  37. 37.
    Schulz M, Binder WH. Mixed hybrid lipid/polymer vesicles as a novel membrane platform. Macromol Rapid Commun. 2015;36(23):2031–41.CrossRefGoogle Scholar
  38. 38.
    Kaiser N, Kimpfler A, Massing U, Burger AM, Fiebig HH, Brandl M, et al. 5-Fluorouracil in vesicular phospholipid gels for anticancer treatment: entrapment and release properties. Int J Pharm. 2003;256(1–2):123–31.CrossRefGoogle Scholar
  39. 39.
    Ickenstein LM, Sandström MC, Mayer LD, Edwards K. Effects of phospholipid hydrolysis on the aggregate structure in DPPC/DSPE-PEG2000 liposome preparations after gel to liquid crystalline phase transition. Biochim Biophys Acta. 2006;1758(2):171–80.CrossRefGoogle Scholar
  40. 40.
    Bowick MJ, Sknepnek R. Pathways to faceting of vesicles. Soft Matter. 2013;9(34):8088–95.CrossRefGoogle Scholar
  41. 41.
    Itel F, Chami M, Najer A, Lörcher S, Wu D, Dinu IA, et al. Molecular organization and dynamics in polymersome membranes: a lateral diffusion study. Macromolecules. 2014;47(21):7588–96.CrossRefGoogle Scholar
  42. 42.
    Andersson M, Hammarstroem L, Edwards K. Effect of bilayer phase transitions on vesicle structure, and its influence on the kinetics of viologen reduction. J Phys Chem. 1995;99(39):14531–8.CrossRefGoogle Scholar
  43. 43.
    Johnsson M, Edwards K. Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J. 2003;85(6):3839–47.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Dao TPT, Brûlet A, Fernandes F, Er-Rafik M, Ferji K, Schweins R, et al. Mixing block copolymers with phospholipids at the nanoscale: from hybrid polymer/lipid wormlike micelles to vesicles presenting lipid nanodomains. Langmuir. 2017;33(7):1705–15.CrossRefGoogle Scholar
  45. 45.
    Campbell PI. Toxicity of some charged lipids used in liposome preparations. Cytobios. 1983;37(145):21–6.PubMedGoogle Scholar
  46. 46.
    Szoka FC Jr, Milholland D, Barza M. Effect of lipid composition and liposome size on toxicity and in vitro fungicidal activity of liposome-intercalated amphotericin B. Antimicrob Agents Chemother. 1987;31(3):421–9.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Roursgaard M, Knudsen KB, Northeved H, Persson M, Christensen T, Kumar PEK, et al. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung epithelial (A549) cell lines. Toxicol in Vitro. 2016;36:164–71.CrossRefGoogle Scholar
  48. 48.
    Chang HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2011;7:49–60.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Simões MG, Alves P, Carvalheiro M, Simões PN. Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery. Colloids Surf B: Biointerfaces. 2017;152:103–13.CrossRefGoogle Scholar
  50. 50.
    Oh WK, Kim S, Yoon H, Jang J. Shape-dependent cytotoxicity and proinflammatory response of poly(3,4-ethylenedioxythiophene) nanomaterials. Small. 2010;6(7):872–9.CrossRefGoogle Scholar
  51. 51.
    Eliezar J, Scarano W, Boase NRB, Thurecht KJ, Stenzel MH. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs. Biomacromolecules. 2015;16(2):515–23.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Nikolaos Naziris
    • 1
  • Natassa Pippa
    • 1
    • 2
  • Dimitris Stellas
    • 3
    • 4
  • Varvara Chrysostomou
    • 2
  • Stergios Pispas
    • 2
  • Costas Demetzos
    • 1
    Email author
  • Marcin Libera
    • 5
  • Barbara Trzebicka
    • 5
  1. 1.Section of Pharmaceutical Technology, Department of Pharmacy, School of Health SciencesNational and Kapodistrian University of AthensAthensGreece
  2. 2.Theoretical and Physical Chemistry InstituteNational Hellenic Research FoundationAthensGreece
  3. 3.Biomedical Research FoundationAcademy of AthensAthensGreece
  4. 4.Vaccine Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthFrederickUSA
  5. 5.Centre of Polymer and Carbon MaterialsPolish Academy of SciencesZabrzePoland

Personalised recommendations