Advertisement

AAPS PharmSciTech

, Volume 19, Issue 5, pp 2370–2382 | Cite as

Flutamide-Loaded Zein Nanocapsule Hydrogel, a Promising Dermal Delivery System for Pilosebaceous Unit Disorders

  • Marwa Ahmed Sallam
  • Ahmed O. Elzoghby
Research Article

Abstract

Zein is a naturally occurring corn protein having similarity to skin keratin. Owing to its hydrophobicity and biodegradability, zein nanocarriers are promising drug delivery vehicles for hydrophobic dermatological drugs. In this study, zein-based nanocapsules (ZNCs) were exploited for the first time as dermal delivery carriers for flutamide (FLT), an antiandrogen used for the management of pilosebasceous unit disorders. FLT-loaded ZNC of appropriate particle size and negative surface charge were prepared by nanoprecipitation method. The dermal permeation and skin retention of FLT from ZNCs were studied in comparison to corresponding nanoemulsion (NE) and hydroalcoholic drug solution (HA). ZNCs showed a significantly lower permeation flux compared to NE and HA while increasing the skin retention of FLT. Confocal laser scanning microscopy (CLSM) demonstrated the follicular localization of the fluorescently labeled NCs. The incorporation of NCs in chitosan gel or Carbomer® 934 gel was studied. Carbomer® gel increased the skin retention of FLT compared to chitosan gel. Accordingly, Carbomer® hydrogel embedding FLT-loaded ZNCs is a promising inexpensive, biocompatible dermal delivery nanocarrier for localized therapy of PSU disorders suitable for application on oily skin.

KEY WORDS

zein pilosebaceous unit confocal imaging follicular targeting flutamide 

Notes

Acknowledgments

This work is supported by a research grant funded by center of special studies at bibliotheca Alexandrina (CSSP-BIBALEX).

Compliance with Ethical Standards

Conflict of Interest

The authors reported no conflict of interest.

Supplementary material

12249_2018_1087_MOESM1_ESM.docx (169 kb)
ESM 1 (DOCX 169 kb)

References

  1. 1.
    Williams HC, Dellavalle RP, Garner S. Acne vulgaris. Lancet. 2012;379(9813):361–72.CrossRefPubMedGoogle Scholar
  2. 2.
    Knutsen-Larson S, Dawson AL, Dunnick CA, Dellavalle RP. Acne vulgaris: pathogenesis, treatment, and needs assessment. Dermatol Clin. 2012;30(1):99–106.CrossRefPubMedGoogle Scholar
  3. 3.
    Cash T. The psychosocial consequences of androgenetic alopecia: a review of the research literature. Br J Dermatol. 1999;141:398–405.CrossRefPubMedGoogle Scholar
  4. 4.
    Husein-ElAhmed H. Management of acne vulgaris with hormonal therapies in adult female patients. Dermatol Ther. 2015;28(3):166–72.CrossRefPubMedGoogle Scholar
  5. 5.
    Brufsky A, Fontaine-Rothe P, Berlane K, Rieker P, Jiroutek M, Kaplan I, et al. Finasteride and flutamide as potency-sparing androgen-ablative therapy for advanced adenocarcinoma of the prostate. Urology. 1997;49(6):913–20.CrossRefPubMedGoogle Scholar
  6. 6.
    Adalatkhah H, Pourfarzi F, Sadeghi-Bazargani H. Flutamide versus a cyproterone acetate-ethinyl estradiol combination in moderate acne: a pilot randomized clinical trial. Clin Cosmet Investig Dermatol. 2011;4:117–21.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Paradisi R, Porcu E, Fabbri R, Seracchioli R, Battaglia C, Venturoli S. Prospective cohort study on the effects and tolerability of flutamide in patients with female pattern hair loss. Ann Pharmacother. 2011;45(4):469–75.CrossRefPubMedGoogle Scholar
  8. 8.
    Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lipid nanocarriers for dermal delivery of lutein: preparation, characterization stability and performance. Int J Pharm. 2011;414(1):267–75.CrossRefPubMedGoogle Scholar
  9. 9.
    Durán N, Teixeira Z, Marcato PD. Topical application of nanostructures: solid lipid, polymeric and metallic nanoparticles. Nanocosmetics and Nanomedicines: Springer. 2011. p. 69–99.Google Scholar
  10. 10.
    Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2013;5(3):205–18.PubMedGoogle Scholar
  11. 11.
    Jain AK, Jain A, Garg NK, Agarwal A, Jain A, Jain SA, et al. Adapalene loaded solid lipid nanoparticles gel: an effective approach for acne treatment. Colloids Surf B: Biointerfaces. 2014;121:222–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Sallam MA, Marin Bosca MT. Mechanistic analysis of human skin distribution and follicular targeting of adapalene-loaded biodegradable Nanospheres with an insight into hydrogel matrix influence, in vitro skin irritation, and in vivo tolerability. J Pharm Sci. 2017;106(10):3140–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Madheswaran T, Baskaran R, Sundaramoorthy P, Yoo BK. Enhanced skin permeation of 5alpha-reductase inhibitors entrapped into surface-modified liquid crystalline nanoparticles. Arch Pharm Res. 2015;38(4):534–42.CrossRefPubMedGoogle Scholar
  14. 14.
    Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.CrossRefPubMedGoogle Scholar
  15. 15.
    Poletto FS, Beck RC, Guterres SS, Pohlmann AR. Polymeric nanocapsules: concepts and applications. Nanocosmetics and nanomedicines: Springer; 2011. p. 49–68.Google Scholar
  16. 16.
    Ourique A, Pohlmann A, Guterres S, Beck R. Tretinoin-loaded nanocapsules: preparation, physicochemical characterization, and photostability study. Int J Pharm. 2008;352(1):1–4.CrossRefPubMedGoogle Scholar
  17. 17.
    De Brum TL, Fiel LA, Contri RV, Guterres SS, Pohlmann AR. Polymeric nanocapsules and lipid-core nanocapsules have diverse skin penetration. J Nanosci Nanotechnol. 2015;15(1):773–80.CrossRefPubMedGoogle Scholar
  18. 18.
    Santos SS, Lorenzoni A, Ferreira LM, Mattiazzi J, Adams AI, Denardi LB, et al. Clotrimazole-loaded Eudragit® RS100 nanocapsules: preparation, characterization and in vitro evaluation of antifungal activity against Candida species. Mater Sci Eng C. 2013;33(3):1389–94.CrossRefGoogle Scholar
  19. 19.
    Teixeira M, Alonso MJ, Pinto MM, Barbosa CM. Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3-methoxyxanthone. Eur J Pharm Biopharm. 2005;59(3):491–500.CrossRefPubMedGoogle Scholar
  20. 20.
    Gaber M, Medhat W, Hany M, Saher N, Fang J-Y, Elzoghby A. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: challenges and outcomes. J Control Release. 2017;254:75–91.CrossRefPubMedGoogle Scholar
  21. 21.
    Elzoghby AO, Vranic BZ, Samy WM, Elgindy NA. Swellable floating tablet based on spray-dried casein nanoparticles: near-infrared spectral characterization and floating matrix evaluation. Int J Pharm. 2015;491(1):113–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Wang L, Qin G, Geng S, Dai Y, Wang J-Y. Preparation of zein conjugated quantum dots and their in vivo transdermal delivery capacity through nude mouse skin. J Biomed Nanotechnol. 2013;9(3):367–76.CrossRefPubMedGoogle Scholar
  23. 23.
    Elzoghby AO, Elgohary MM, Kamel NM. Chapter six-implications of protein-and peptide-based nanoparticles as potential vehicles for anticancer drugs. Adv Protein Chem Struct Biol. 2015;98:169–221.CrossRefPubMedGoogle Scholar
  24. 24.
    Muthuselvi L, Dhathathreyan A. Simple coacervates of zein to encapsulate gitoxin. Colloids Surf B: Biointerfaces. 2006;51(1):39–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhong Q, Tian H, Zivanovic S. Encapsulation of fish oil in solid zein particles by liquid-liquid dispersion. J Food Process Preserv. 2009;33(2):255–70.CrossRefGoogle Scholar
  26. 26.
    Elzoghby AO, Helmy MW, Samy WM, Elgindy NA. Micellar delivery of flutamide via milk protein nanovehicles enhances its anti-tumor efficacy in androgen-dependent prostate cancer rat model. Pharm Res. 2013;30(10):2654–63.CrossRefPubMedGoogle Scholar
  27. 27.
    Venturini CG, Jäger E, Oliveira CP, Bernardi A, Battastini AM, Guterres SS, et al. Formulation of lipid core nanocapsules. Colloids Surf A Physicochem Eng Asp. 2011;375(1):200–8.CrossRefGoogle Scholar
  28. 28.
    Sallam MA, Helal HM, Mortada SM. Rationally designed nanocarriers for intranasaltherapy of allergic rhinitis: influence of carrier type on in vivo nasal deposition. Int J Nanomedicine. 2016;11:2345.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sallam MA, Motawaa AM, Mortada SM. A modern approach for controlled transdermal delivery of diflunisal: optimization and in vivo evaluation. Drug Dev Ind Pharm. 2013;39(4):600–10.CrossRefPubMedGoogle Scholar
  30. 30.
    Elzoghby A, Freag M, Mamdouh H, Elkhodairy K. Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: focus on cancer therapy. Curr Pharm Des. 2017.Google Scholar
  31. 31.
    Paliwal R, Palakurthi S. Zein in controlled drug delivery and tissue engineering. J Control Release. 2014;189:108–22.CrossRefPubMedGoogle Scholar
  32. 32.
    Lai L, Guo H. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm. 2011;404(1):317–23.CrossRefPubMedGoogle Scholar
  33. 33.
    Blouza IL, Charcosset C, Sfar S, Fessi H. Preparation and characterization of spironolactone-loaded nanocapsules for paediatric use. Int J Pharm. 2006;325(1):124–31.CrossRefGoogle Scholar
  34. 34.
    Rodriguez-Emmenegger C, Jäger A, Jäger E, Stepanek P, Alles AB, Guterres S, et al. Polymeric nanocapsules ultra stable in complex biological media. Colloids Surf B: Biointerfaces. 2011;83(2):376–81.CrossRefPubMedGoogle Scholar
  35. 35.
    Elzoghby AO, Mostafa SK, Helmy MW, ElDemellawy MA, Sheweita SA. Multi-reservoir phospholipid Shell encapsulating protamine nanocapsules for co-delivery of letrozole and celecoxib in breast cancer therapy. Pharm Res. 2017;34(9):1956–69.CrossRefPubMedGoogle Scholar
  36. 36.
    Elzoghby AO, Mostafa SK, Helmy MW, ElDemellawy MA, Sheweita SA. Superiority of aromatase inhibitor and cyclooxygenase-2 inhibitor combined delivery: hyaluronate-targeted versus PEGylated protamine nanocapsules for breast cancer therapy. Int J Pharm. 2017;529(1–2):178–92.CrossRefPubMedGoogle Scholar
  37. 37.
    Lobato KB, Paese K, Forgearini JC, Guterres SS, Jablonski A, Rios Ade O. Characterisation and stability evaluation of bixin nanocapsules. Food Chem. 2013;141(4):3906–12.CrossRefPubMedGoogle Scholar
  38. 38.
    Elgindy N, Elkhodairy K, Molokhia A, Elzoghby A. Lyophilization monophase solution technique for preparation of amorphous flutamide dispersions. Drug Dev Ind Pharm. 2011;37(7):754–64.CrossRefPubMedGoogle Scholar
  39. 39.
    Abdel-Mottaleb MM, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm. 2011;79(1):36–42.CrossRefPubMedGoogle Scholar
  40. 40.
    Williams AC, Barry BW. Penetration enhancers. Adv Drug Deliv Rev. 2012;64:128–37.CrossRefGoogle Scholar
  41. 41.
    Contri R, Fiel L, Alnasif N, Pohlmann A, Guterres S, Schäfer-Korting M. Skin penetration and dermal tolerability of acrylic nanocapsules: influence of the surface charge and a chitosan gel used as vehicle. Int J Pharm. 2016;507(1):12–20.CrossRefPubMedGoogle Scholar
  42. 42.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H. Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym. 2010;82(2):227–32.CrossRefGoogle Scholar
  43. 43.
    Luo Y, Wang Q. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol. 2014;64:353–67.CrossRefPubMedGoogle Scholar
  44. 44.
    Anirudhan TS, Nair SS, Nair AS. Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr Polym. 2016;152:687–98.CrossRefPubMedGoogle Scholar
  45. 45.
    Hafner A, Lovric J, Pepic I, Filipovic-Grcic J. Lecithin/chitosan nanoparticles for transdermal delivery of melatonin. J Microencapsul. 2011;28(8):807–15.CrossRefPubMedGoogle Scholar
  46. 46.
    Machida Y, Masuda H, Fujiyama N, Iwata M, Nagai T. Preparation and phase II clinical examination of topical dosage forms for the treatment of carcinoma colli containing bleomycin, carboquone, or 5-fluorouracil with Hydroxypropyl cellulose. Chem Pharm Bull (Tokyo). 1980;28(4):1125–30.CrossRefGoogle Scholar
  47. 47.
    Shin SC, Kim HJ, Oh IJ, Cho CW, Yang KH. Development of tretinoin gels for enhanced transdermal delivery. Eur J Pharm Biopharm. 2005;60(1):67–71.CrossRefPubMedGoogle Scholar
  48. 48.
    Park SN, Jo NR, Jeon SH. Chitosan-coated liposomes for enhanced skin permeation of resveratrol. J Ind Eng Chem. 2014;20(4):1481–5.CrossRefGoogle Scholar
  49. 49.
    Taveira SF, Nomizo A, Lopez RF. Effect of the iontophoresis of a chitosan gel on doxorubicin skin penetration and cytotoxicity. J Control Release. 2009;134(1):35–40.CrossRefPubMedGoogle Scholar
  50. 50.
    He W, Guo X, Xiao L, Feng M. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm. 2009;382(1–2):234–43.CrossRefPubMedGoogle Scholar
  51. 51.
    Yang Y, Sunoqrot S, Stowell C, Ji J, Lee C-W, Kim JW, et al. Effect of size, surface charge, and hydrophobicity of poly (amidoamine) dendrimers on their skin penetration. Biomacromolecules. 2012;13(7):2154–62.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Gillet A, Compère P, Lecomte F, Hubert P, Ducat E, Evrard B, et al. Liposome surface charge influence on skin penetration behaviour. Int J Pharm. 2011;411(1):223–31.CrossRefPubMedGoogle Scholar
  53. 53.
    Lademann J, Patzelt A, Richter H, Antoniou C, Sterry W, Knorr F. Determination of the cuticula thickness of human and porcine hairs and their potential influence on the penetration of nanoparticles into the hair follicles. J Biomed Opt. 2009;14(2):021014.CrossRefPubMedGoogle Scholar
  54. 54.
    Rancan F, Afraz Z, Combadiere B, Blume-Peytavi U, Vogt A. Hair follicle targeting with nanoparticles. In: Nasir A, Friedman A, Wang S, editors. Nanotechnology in dermatology. New York, NY: Springer New York; 2013. p. 95–107.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  1. 1.Industrial Pharmacy Department, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
  2. 2.Cancer Nanotechnology Research Laboratory (CNRL), Faculty of PharmacyAlexandria UniversityAlexandriaEgypt

Personalised recommendations