Advertisement

AAPS PharmSciTech

, Volume 19, Issue 5, pp 2311–2321 | Cite as

Solving the Delivery Problems of Triclabendazole Using Cyclodextrins

  • Daniel Real
  • Darío Leonardi
  • Robert O. WilliamsIII
  • Michael A. Repka
  • Claudio J. Salomon
Research Article

Abstract

Triclabendazole is the first-line drug of choice to treat and control fasciolasis, a neglected parasitic human disease. It is a class II/IV compound according to the Biopharmaceutics Classification System. Thus, the aim of this study was to improve aqueous solubility and dissolution rate of triclabendazole complexed with 2-hydroxylpropyl-β-cyclodextrin (HP-β-CD) and methyl-β-cyclodextrin (Me-β-CD) at 1:1 and 1:2 M ratio. The impact of storage on the solubility, dissolution profile, and solid-state properties of such complexes was also investigated. Drug-carrier interactions were characterized by infrared spectroscopy, differential scanning calorimetry, X-ray diffractometry, and scanning electron microscopy. The solubility of triclabendazole improved up to 256- and 341-fold using HP-β-CD and Me-β-CD, respectively. In particular, the drug complexed with Me-β-CD showed a positive deviation from linearity, suggesting that its solubility increases with an increasing concentration of Me-β-CD concentration in a nonlinear manner. The drug dissolution was found to be improved through complex formation with HP-β-CD and Me-β-CD. In particular, the 1:2 M ratio complexes exhibited higher dissolution than the corresponding 1:1 M ratio complexes. The physicochemical characterization of the systems showed strong evidence of amorphous phases and/or of the formation of an inclusion complex. Stored at 25 °C, 60% RH for 24 months, drug complexed with β-cyclodextrins (CDs) at 1:2 M ratio remained amorphous. Based on these findings, it is postulated that the formation of triclabendazole-CD inclusion complexes produced significant enhancement in both the dissolution and solid-state properties of the drug, which may lead to the development of triclabendazole novel formulations with improved biopharmaceutical characteristics.

KEY WORDS

triclabendazole cylodextrin amorphous nature dissolution profiles storage 

Notes

Funding Information

DR, DL, and CJS gratefully acknowledge the Universidad Nacional de Rosario (Argentina) and CONICET (Argentina) for financial support. DR thanks CONICET (Argentina) for a Ph.D. fellowship.

References

  1. 1.
    Mas-Coma S. Epidemiology of fascioliasis in human endemic areas. J Helminthol. 2005;79(3):207–16.CrossRefPubMedGoogle Scholar
  2. 2.
    Mas-Coma S, Valero MA, Bargues MD. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol. 2009;69:41–146.  https://doi.org/10.1016/S0065-308X(09)69002-3.CrossRefPubMedGoogle Scholar
  3. 3.
    Mas-Coma S, Bargues MD, Valero MA. Diagnosis of human fascioliasis by stool and blood techniques: update for the present global scenario. Parasitology. 2014;141(1):1918–46.  https://doi.org/10.1017/S0031182014000869.CrossRefPubMedGoogle Scholar
  4. 4.
    Fairweather I. Triclabendazole progress report, 2005–2009: an advancement of learning? J Helminthol. 2009;83(2):139–50.  https://doi.org/10.1017/S0022149X09321173.CrossRefPubMedGoogle Scholar
  5. 5.
    Keiser J, Utzinger J. Food-borne trematodiases. Clin Microbiol Rev. 2009;22(3):466–83.  https://doi.org/10.1128/CMR.00012-09.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
  7. 7.
    Keiser J, Engels D, Buscher G, Utzinger J. Triclabendazole for the treatment of fascioliasis and paragonimiasis. Expert Opin Investig Drugs. 2005;14(12):1513–26.  https://doi.org/10.1517/13543784.14.12.1513.CrossRefPubMedGoogle Scholar
  8. 8.
    Cwiklinski K, O’Neill SM, Donnelly S, Dalton JP. A prospective view of animal and human fasciolosis. Parasite Immunol. 2016;38(9):558–68.  https://doi.org/10.1111/pim.12343.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kelley JM, Elliott TP, Beddoe T, Skuce GA, Spithill TW. Current threat of triclabendazole resistance in Fasciola hepatica. Trends Parasitol. 2016;32(6):458–69.  https://doi.org/10.1016/j.pt.2016.03.002.CrossRefPubMedGoogle Scholar
  10. 10.
    Duthaler U, Smith TA, Keiser J. In vivo and in vitro sensitivity of Fasciola hepatica to triclabendazole combined with artesunate, artemether, or OZ78. Antimicrob Agents Chemother. 2010;54(11):4596–604.  https://doi.org/10.1128/AAC.00828-10.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Keiser J, Sayed H, El-Ghanam M, et al. Efficacy and safety of artemether in the treatment of chronic fascioliasis in Egypt: exploratory phase-2 trials. PLoS Negl Trop Dis. 2011;5:e1285.  https://doi.org/10.1371/journal.pntd.0001285.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Diab TM, Mansour HH, Mahmoud SS. Fasciola gigantica: parasitological and scanning electron microscopy study of the in vitro effects of ivermectin and/or artemether. Exp Parasitol. 2010;124(3):279–84.  https://doi.org/10.1016/j.exppara.2009.10.013.CrossRefPubMedGoogle Scholar
  13. 13.
    Gomez-Puerta LA, Gavidia C, Lopez-Urbina MT, Gomez-Puerta LA, Gavidia C, Lopez-Urbina MT, et al. Efficacy of a single oral dose of oxfendazole against Fasciola hepatica in naturally infected sheep. Am J Trop Med Hyg. 2012;86(3):486–8.  https://doi.org/10.4269/ajtmh.2012.11-0476.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm. 2004;58(2):265–78.  https://doi.org/10.1016/j.ejpb.2004.03.001.CrossRefPubMedGoogle Scholar
  15. 15.
    Vialpando M, Smulders S, Bone S, Jager C, Vodak D, Van Speybroeck M, et al. Evaluation of three amorphous drug delivery technologies to improve the oral absorption of flubendazole. J Pharm Sci. 2016;105(9):2782–93.  https://doi.org/10.1016/j.xphs.2016.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Panwar P, Pandey B, Lakhera PC, Singh KP. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int J Nanomedicine. 2010;5:101–8.  https://doi.org/10.2147/IJN.S8030.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    de la Torre-Iglesias PM, García-Rodriguez JJ, Torrado G, Torrado S, Torrado-Santiago S, Bolás-Fernández F. Enhanced bioavailability and anthelmintic efficacy of mebendazole in redispersible microparticles with low-substituted hydroxypropylcellulose. Drug Des Devel Ther. 2014;8:1467–79.  https://doi.org/10.2147/DDDT.S65561.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Flores-Ramos M, Ibarra-Velarde F, Jung-Cook H, Hernández-Campos A, Vera-Montenegro Y, Castillo R. Novel triclabendazole prodrug: a highly water soluble alternative for the treatment of fasciolosis. Bioorg Med Chem Lett. 2017;27(3):616–9.  https://doi.org/10.1016/j.bmcl.2016.12.004.CrossRefPubMedGoogle Scholar
  19. 19.
    Luzardo-Álvarez A, Martínez-Mazagastos J, Santamarina-Fernández MT, Otero-Espinar FJ, Blanco-Méndez J. Oral pharmacological treatments for ichthyophthiriosis of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2003;220(1–4):15–25.  https://doi.org/10.1016/S0044-8486(02)00228-4.CrossRefGoogle Scholar
  20. 20.
    Crini G. Review: a history of cyclodextrins. Chem Rev. 2014;114(21):10940–75.  https://doi.org/10.1021/cr500081p.CrossRefPubMedGoogle Scholar
  21. 21.
    Challa R, Ahuja A, Ali J, Khar RK. Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech. 2005;6(2):E329–57.  https://doi.org/10.1208/pt060243.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loftsson T, Brewster M. Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol. 2010;62(11):1607–21.  https://doi.org/10.1111/j.2042-7158.2010.01030.x.CrossRefPubMedGoogle Scholar
  23. 23.
    Muankaew C, Loftsson T. Cyclodextrin-based formulations: a non-invasive platform for targeted drug delivery. Basic Clin Pharmacol Toxicol. 2018;122(1):46–55.  https://doi.org/10.1111/bcpt.12917.CrossRefPubMedGoogle Scholar
  24. 24.
    García A, Leonardi D, Salazar MO, Lamas MC. Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization. PLoS One. 2014;9(2):e88234.  https://doi.org/10.1371/journal.pone.0088234.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leonardi D, Bombardiere ME, Salomon CJ. Effects of benznidazole:cyclodextrin complexes on the drug bioavailability upon oral administration to rats. Int J Biol Macromol. 2013;62:543–8.  https://doi.org/10.1016/j.ijbiomac.2013.10.007.CrossRefPubMedGoogle Scholar
  26. 26.
    Wu Z, Tucker IG, Razzak M, Yang L, McSporran K, Medlicott NJ. Absorption and tissue tolerance of ricobendazole in the presence of hydroxypropyl-beta-cyclodextrin following subcutaneous injection in sheep. Int J Pharm. 2010;397(1–2):96–102.  https://doi.org/10.1016/j.ijpharm.2010.07.002.CrossRefPubMedGoogle Scholar
  27. 27.
    Higuchi T, Connors A. Phase-solubility techniques. In: Advances in analytical chemistry instrumentation. New York, NY: Wiley Interscience; 1965. p. 117–211.Google Scholar
  28. 28.
    Brewster ME, Loftsson T. Complexation: use of cyclodextrins to improve pharmaceutical properties of intramuscular formulations. In: Injectable Drug Development: Techniques to Overcome Pain and Irritation. Denver, CO: Interpharm Press; 1999. p. 307–36.CrossRefGoogle Scholar
  29. 29.
    Khan AK. The concept of dissolution efficiency. J Pharm Pharmacol. 1975;27(1):48–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Yavuz B, Bilensoy E, Vural I, Sumnu M. Alternative oral exemestane formulation: improved dissolution and permeation. Int J Pharm. 2010;398(1–2):137–45.  https://doi.org/10.1016/j.ijpharm.2010.07.046.CrossRefPubMedGoogle Scholar
  31. 31.
    Davis ME, Brewster ME. Cyclodextrin-based pharmaceutics: past, present, future. Nat Rev Drug Discov. 2004;3(12):1023–35.  https://doi.org/10.1038/nrd1576.CrossRefPubMedGoogle Scholar
  32. 32.
    Daniel-Mwambete K, Torrado S, Cuesta-Bandera C, Ponce-Gordo F, Torrado JJ. The effect of solubilization on the oral bioavailability of three benzimidazole carbamate drugs. Int J Pharm. 2004;272(1–2):29–36.  https://doi.org/10.1016/j.ijpharm.2003.11.030.CrossRefPubMedGoogle Scholar
  33. 33.
    Brun H, Paul M, Razzouq N, Binhas M, Gibaud S, Astier A. Cyclodextrin inclusion complexes of the central analgesic drug nefopam. Drug Dev Ind Pharm. 2006;32(10):1123–34.  https://doi.org/10.1080/03639040600920663.CrossRefPubMedGoogle Scholar
  34. 34.
    Fernandes CM, Vieira MT, Veiga FJB. Physicochemical characterization and in vitro dissolution behavior of nicardipine-cyclodextrins inclusion compounds. Eur J Pharm Sci. 2001;15(1):79–88.  https://doi.org/10.1016/S0928-0987(01)00208-1.CrossRefGoogle Scholar
  35. 35.
    Liu J, Qiu L, Gao J, Jin Y. Preparation, characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-beta-cyclodextrin. Int J Pharm. 2006;312(1–2):137–43.  https://doi.org/10.1016/j.ijpharm.2006.01.011.CrossRefPubMedGoogle Scholar
  36. 36.
    Loftsson T, Brewster ME, Másson M. Role of cyclodextrins in improving oral drug delivery. Am J Drug Del. 2004;2(4):261–75.  https://doi.org/10.2165/00137696-200402040-00006 CrossRefGoogle Scholar
  37. 37.
    Eid E, Abdul A, Suliman FEA, Sukari MA, Rasedee A, Fatah SS. Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbohydr Polym. 2011;83(4):1707–14.  https://doi.org/10.1016/j.carbpol.2010.10.033.CrossRefGoogle Scholar
  38. 38.
    Pillai K, Akhter J, Morris DL. Super aqueous solubility of albendazole in β-cyclodextrin for parenteral application in cancer therapy. J Cancer. 2017;8(6):913–23.  https://doi.org/10.7150/jca.17301.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wu Z, Razzak M, Tucker IG, Medlicott NJ. Physicochemical characterization of ricobendazole: I. Solubility, lipophilicity, and ionization characteristics. J Pharm Sci. 2005;94(5):983–93.  https://doi.org/10.1002/jps.20282.CrossRefPubMedGoogle Scholar
  40. 40.
    Lahiani-Skiba M, Coquard A, Bounoure F, Verite P, Arnaud P, Skiba M. Mebendazole complexes with various cyclodextrins: preparation and physicochemical characterization. J Incl Phenom Macro. 2007;57:197–201.  https://doi.org/10.1007/s10847-006-9196-9.CrossRefGoogle Scholar
  41. 41.
    di Cagno M, Stein PC, Skalko-Basnet N, Brandl M, Bauer-Brandl A. Solubilization of ibuprofen with β-cyclodextrin derivatives: energetic and structural studies. J Pharm Biomed Anal. 2011;55(3):446–51.  https://doi.org/10.1016/j.jpba.2011.02.022.CrossRefPubMedGoogle Scholar
  42. 42.
    Loh GOK, Tan YTF, Peh KK. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharm. 2016;11(4):536–46.  https://doi.org/10.1016/j.ajps.2016.02.009.CrossRefGoogle Scholar
  43. 43.
    Karanje RV, Bhavsar YV, Jahagirdar KH, Bhise KS. Formulation and development of extended-release micro particulate drug delivery system of solubilized rifaximin. AAPS PharmSciTech. 2013;14(2):639–48.  https://doi.org/10.1208/s12249-013-9949-x.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hong J, Shah JC, Mcgonagle MD. Effect of cyclodextrin derivation and amorphous state of complex on accelerated degradation of ziprasidone. J Pharm Sci. 2011;100(7):2703–16.  https://doi.org/10.1002/jps.22498.CrossRefPubMedGoogle Scholar
  45. 45.
    Tothadi S, Bhogala BR, Gorantla AR, Thakur TS, Jetti RK, Desiraju GR. Triclabendazole: an intriguing case of co-existence of conformational and tautomeric polymorphism. Chemistry-An Asian J. 2012;7(2):330–42.  https://doi.org/10.1002/asia.201100638.CrossRefGoogle Scholar
  46. 46.
    Soliman OAE, Kimura K, Hirayama F, Uekama K, El-Sabbagh HM, El-Gawad AH, et al. Amorphous spironolactone-hydroxypropylated cyclodextrin complexes with superior dissolution and oral bioavailability. Int J Pharm. 1997;149(1):73–83.  https://doi.org/10.1016/S0378-5173(96)04862-4.CrossRefGoogle Scholar
  47. 47.
    Joudieh S, Bon P, Martel B, Skiba M, Lahiani-Skiba M. Cyclodextrin polymers as efficient solubilizers of albendazole: complexation and physico-chemical characterization. J Nanosci Nanotechnol. 2009;9(1):132–40.  https://doi.org/10.1166/jnn.2009.J092.CrossRefPubMedGoogle Scholar
  48. 48.
    Hirayama F, Usami M, Kimura K, Uekama K. Crystallization and polymorphic transition behavior of chloramphenicol palmitate in 2-hydroxypropyl-β-cyclodextrin matrix. Eur J Pharm Sci. 1997;5(1):23–30.  https://doi.org/10.1016/S0928-0987(96)00250-3.CrossRefGoogle Scholar
  49. 49.
    Kimura K, Hirayama F, Arima H, Uekama K. Effects of aging on crystallization, dissolution and absorption characteristics of amorphous tolbutamide-2-hydroxypropyl-beta-cyclodextrin complex. Chem Pharm Bull. 2000;48(5):646–50.CrossRefPubMedGoogle Scholar
  50. 50.
    de Jesus MB, Fraceto LF, Martini MF, Pickholz M, Ferreira CV, de Paula E. Non-inclusion complexes between riboflavin and cyclodextrins. J Pharm Pharmacol. 2012;64(6):832–642.  https://doi.org/10.1111/j.2042-7158.2012.01492.x.CrossRefPubMedGoogle Scholar
  51. 51.
    Liu L, Zhu S. Preparation and characterization of inclusion complexes of prazosin hydrochloride with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. J Pharm Biomed Anal. 2006;40(1):122–7.  https://doi.org/10.1016/j.jpba.2005.06.022.CrossRefPubMedGoogle Scholar
  52. 52.
    Anderson NH, Bauer M, Boussac N, Khan-Malek R, Munden P, Sardaro M. An evaluation of fit factors and dissolution efficiency for the comparison of in vitro dissolution profiles. J Pharm Biomed Anal. 1998;17(4–5):811–22.CrossRefPubMedGoogle Scholar
  53. 53.
    Badr-Eldin SM, Elkheshen SA, Ghorab MM. Inclusion complexes of tadalafil with natural and chemically modified beta-cyclodextrins. I: preparation and in-vitro evaluation. Eur J Pharm Biopharm. 2008;70(3):819–27.  https://doi.org/10.1016/j.ejpb.2008.06.024.CrossRefPubMedGoogle Scholar
  54. 54.
    Balata G, Mahdi M, Abu BR. Improvement of solubility and dissolution properties of Ketoconazole by solid dispersions and inclusion complexes. Asian J Pharm. 2010;5:1–12.Google Scholar
  55. 55.
    Semalty M, Panchpuri M, Singh D, Semalty A. Cyclodextrin inclusion complex of racecadotril: effect of drug-β-cyclodextrin ratio and the method of complexation. Curr Drug Discov Technol. 2014;11(2):154–61.  https://doi.org/10.2174/15701638113106660043.CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Daniel Real
    • 1
  • Darío Leonardi
    • 1
    • 2
  • Robert O. WilliamsIII
    • 3
  • Michael A. Repka
    • 4
  • Claudio J. Salomon
    • 1
    • 2
  1. 1.Instituto de Química de RosarioConsejo Nacional de Investigaciones Científicas y TecnológicasRosarioArgentina
  2. 2.Departamento Farmacia, Facultad de Cs. Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  3. 3.Division of Molecular Pharmaceutics and Drug Delivery, College of PharmacyUniversity of Texas at AustinAustinUSA
  4. 4.Department of Pharmaceutics and Drug Delivery, School of PharmacyUniversity of MississippiOxfordUSA

Personalised recommendations