Advertisement

AAPS PharmSciTech

, Volume 19, Issue 5, pp 2226–2236 | Cite as

Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier

  • Rana M. Obaidat
  • Mohammad Alnaief
  • Hadeia Mashaqbeh
Research Article

Abstract

Carrageenan is an anionic polysaccharide offering many advantages to be used in drug delivery applications. These include availability, thermo-stability, low toxicity, and encapsulating properties. Combination of these properties with aerogel properties like large surface area and porosity make them an ideal candidate for drug adsorption and delivery applications. Emulsion-gelation technique was used to prepare carrageenan gel microparticles with supercritical CO2 for drying and loading purposes. Ibuprofen has been selected as a model drug for drug loading inside. The prepared microparticles were characterized using particle size analysis, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, density measurements, surface area, and porosity measurements. Finally, dissolution was applied to the loaded preparations to test in vitro drug release. Ibuprofen was successfully loaded in the amorphous form inside the prepared microparticles with a significant enhancement in the drug release profile. In conclusion, prepared carrageenan aerogel microparticles showed an excellent potential for use as a drug carrier.

KEY WORDS

carrageenan Aerogels ibuprofen microparticles amorphous 

Notes

Funding Information

The authors would like to thank Deanship of Research at Jordan University of Science and Technology (JUST) for funding this project with fund number 9/2017. The authors would like to acknowledge Scientific Research Funds (SRF) at Ministry of Higher Education (Amman, Jordan) for funding the SFT unit (MPH/2/15/2013).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Dumitriu S. Polysaccharides: structural diversity and functional versatility, second edition, CRC press; 2004.Google Scholar
  2. 2.
    Campo VL, Kawano DF, Silva DB Jr, Carvalho I. Carrageenans: biological properties, chemical modifications and structural analysis—a review. Carbohydr Polym. 2009;77(2):167–80.CrossRefGoogle Scholar
  3. 3.
    Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. London: APhA/Pharmaceutical Press. 2009. Print.Google Scholar
  4. 4.
    Stortz CA, Cerezo AS. Novel findings in carrageenans, agaroids and “hybrid” red seaweed galactans. ChemInform. 2010;33(15)Google Scholar
  5. 5.
    Necas J, Bartosikova L. Carrageenan: a review. Vet Med. 2013;58(4):187–205.CrossRefGoogle Scholar
  6. 6.
    Sipahigil O, Dortunc B. Preparation and in vitro evaluation of verapamil HCl and ibuprofen containing carrageenan beads. Int J Pharm. 2001;228(1):119–28.CrossRefPubMedGoogle Scholar
  7. 7.
    Ozsoy Y, Bergişadi N. Preparation of mefenamic acid sustained release beads based on kappa-carrageenan. Boll Chim Farm. 1999;139(3):120–3.Google Scholar
  8. 8.
    Garcia A, Ghaly E. Preliminary spherical agglomerates of water soluble drug using natural polymer and cross-linking technique. J Control Release. 1996;40(3):179–86.CrossRefGoogle Scholar
  9. 9.
    Sankalia MG, et al. Stability improvement of alpha-amylase entrapped in kappa-carrageenan beads: physicochemical characterization and optimization using composite index. Int J Pharm. 2006b;312(1):1–14.CrossRefPubMedGoogle Scholar
  10. 10.
    Sankalia MG, et al. Physicochemical characterization of papain entrapped in ionotropically cross-linked kappa-carrageenan gel beads for stability improvement using Doehlert shell design. J Pharm Sci. 2006a;95(9):1994–2013.CrossRefPubMedGoogle Scholar
  11. 11.
    Santo VE, et al. Carrageenan-based hydrogels for the controlled delivery of PDGF-BB in bone tissue engineering applications. Biomacromolecules. 2009;10(6):1392–401.CrossRefPubMedGoogle Scholar
  12. 12.
    Thommes M, Kleinebudde P. The behavior of different carrageenans in pelletization by extrusion/spheronization. Pharm Dev Technol. 2008;13(1):27–35.CrossRefPubMedGoogle Scholar
  13. 13.
    Sathuvan M, Thangam R, Gajendiran M, Vivek R, Balasubramanian S, Nagaraj S, et al. κ-Carrageenan: an effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydr Polym. 2017;160:184–93.Google Scholar
  14. 14.
    Funasaki N, Uratsuji I, Okuno T, Hirota S, Neya S. Masking mechanisms of bitter taste of drugs studied with ion selective electrodes. Chem Pharm Bull. 2006;54(8):1155–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Tomoda K, Asahiyama M, Ohtsuki E, Nakajima T, Terada H, Kanebako M, et al. Preparation and properties of carrageenan microspheres containing allopurinol and local anesthetic agents for the treatment of oral mucositis. Colloids Surf B: Biointerfaces. 2009;71(1):27–35.Google Scholar
  16. 16.
    Cheng CJ, Jones OG. Stabilizing zein nanoparticle dispersions with ι-carrageenan. Food Hydrocoll. 2017;69:28–35.CrossRefGoogle Scholar
  17. 17.
    Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydr Polym. 2014;103:1–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Nanaki SG, Kyzas GZ, Tzereme A, Papageorgiou M, Kostoglou M, Bikiaris DN, et al. Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions. Colloids Surf B: Biointerfaces. 2015;127:256–65.Google Scholar
  19. 19.
    Gurav JL, et al. Silica aerogel: synthesis and applications. J Nanomater. 2010;2010:23.CrossRefGoogle Scholar
  20. 20.
    Yin W, Rubenstein DA. Biomedical applications of aerogels. In: Aegerter M., Leventis N., Koebel M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies: Springer; 2011. p. 683–94. Google Scholar
  21. 21.
    Stergar J, Maver U. Review of aerogel-based materials in biomedical applications. J Sol-Gel Sci Technol. 2016;77(3):738–52.CrossRefGoogle Scholar
  22. 22.
    Mayer ST, Kong FM, Pekala RW, Kaschmitter JL. Organic aerogel microspheres and fabrication method therefor. 1996. U.S. Patent 5,508,341.Google Scholar
  23. 23.
    Alnaief M, Alzaitoun MA, García-González CA, Smirnova I. Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydr Polym. 2011;84(3):1011–8.CrossRefGoogle Scholar
  24. 24.
    García-González C, et al. Preparation of tailor-made starch-based aerogel microspheres by the emulsion-gelation method. Carbohydr Polym. 2012;88(4):1378–86.CrossRefGoogle Scholar
  25. 25.
    García-González CA, Jin M, Gerth J, Alvarez-Lorenzo C, Smirnova I. Polysaccharide-based aerogel microspheres for oral drug delivery. Carbohydr Polym. 2015;117:797–806.CrossRefPubMedGoogle Scholar
  26. 26.
    Alnaief M, Obaidat R, Mashaqbeh H. Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydr Polym. 2018;180:264–75.Google Scholar
  27. 27.
    Wang S, Song Z, Wang J, Dong Y, Wu M. Solubilities of ibuprofen in different pure solvents. J Chem Eng Data. 2010;55(11):5283–5.CrossRefGoogle Scholar
  28. 28.
    Sharma R, et al. Formulation and in-vitro evaluation of ibuprofen tablet for colonic delivery: optimization of formulation variables using Box-Behnken design. Int J Pharm Sci Res. 2014;5:204–12.Google Scholar
  29. 29.
    Alsirawan M, et al. Development and validation of a simple HPLC method for the determination of ibuprofen sticking onto punch faces. J Pharm Pharm Sci. 2013;5(4):227–31.Google Scholar
  30. 30.
    Nokhodchi A, Amire O, Jelvehgari M. Physico-mechanical and dissolution behaviors of ibuprofen crystals crystallized in the presence of various additives. Daru. 2010;18(2):74.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Ramukutty S, Ramachandran E. Growth, spectral and thermal studies of ibuprofen crystals. Cryst Res Technol. 2012;47(1):31–8.CrossRefGoogle Scholar
  32. 32.
    Ray R, Maity S, Mandal S, Chatterjee TK, Sa B. Development and evaluation of a new interpenetrating network bead of sodium carboxymethyl xanthan and sodium alginate. Pharmacol Pharm. 2010;1(01):9–17.CrossRefGoogle Scholar
  33. 33.
    Dudognon E, Correia NT, Danède F, Descamps M. Solid-solid transformation in racemic ibuprofen. Pharm Res. 2013;30(1):81–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Shoaib MH, Tazeen J, Merchant HA, Yousuf RI. Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci. 2006;19(2):119–24.PubMedGoogle Scholar
  35. 35.
    Parize AL, Stulzer HK, Laranjeira MCM, Brighente IMC, Souza TCR. Evaluation of chitosan microparticles containing curcumin and crosslinked with sodium tripolyphosphate produced by spray drying. Quím Nova. 2012;35(6):1127–32.CrossRefGoogle Scholar
  36. 36.
    Choi J, et al. Diffusivity of potassium sorbate in κ-carrageenan based antimicrobial film. LWT-Food Sci Technol. 2005;38(4):417–23.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Rana M. Obaidat
    • 1
  • Mohammad Alnaief
    • 2
  • Hadeia Mashaqbeh
    • 1
  1. 1.Department of Pharmaceutical Technology, Faculty of PharmacyJordan University of Science and TechnologyIrbidJordan
  2. 2.Department of Pharmaceutical and Chemical Engineering, Faculty of Applied Medical SciencesGerman Jordanian UniversityIrbidJordan

Personalised recommendations