AAPS PharmSciTech

, Volume 19, Issue 3, pp 1401–1409 | Cite as

Comparative Study of Glyceryl Behenate or Polyoxyethylene 40 Stearate-Based Lipid Carriers for Trans-Resveratrol Delivery: Development, Characterization and Evaluation of the In Vitro Tyrosinase Inhibition

  • Naiara Fachinetti
  • Roberta Balansin Rigon
  • Josimar O. Eloy
  • Mariana Rillo Sato
  • Karen Cristina dos Santos
  • Marlus Chorilli
Research Article
  • 119 Downloads

Abstract

Trans-resveratrol (RSV) is a natural compound with several properties, such as the ability to inhibit the tyrosinase enzyme, with potential application as a skin-lightning agent and for the treatment of skin disorders associated with hyperpigmentation and melanogenesis. However, the drug faces several drawbacks which altogether limit its therapeutic application. Thus, drug loading into nanocarriers emerge as an alternative to circumvent these problems. Herein, nanostructured lipid carriers (NLCs) have been employed for RSV encapsulation, with comparison of two different lipids, glyceryl behenate (more hydrophobic), and polyoxyethylene 40 (PEG 40) stearate. PEG 40 stearate-containing NLCs presented smaller particle size and polydispersity compared with glyceryl behenate, attributed to better emulsification and nanoparticle formation, resulting in higher RSV encapsulation efficiency. Drug was loaded in both carriers as a molecular dispersion. Furthermore, the formulations had very low RSV release, which occurred due to the crystallinity degree of lipid matrix, in accordance with the DSC data. Moreover, RSV cytotoxicity against L-929 cells was not increased when loaded into nanocarriers. Interestingly, RSV-loaded formulation prepared with PEG-40 stearate resulted on greater tyrosinase inhibition than RSV solution and formulation containing glyceryl behenate, equivalent to 1.31 and 1.83 times higher, respectively, demonstrating that the incorporation of RSV into NLC allowed an enhanced tyrosinase inhibitory activity. Overall, the results obtained herein evidence potential for future in vivo evaluation of RSV-loaded NLCs.

KEY WORDS

glyceryl behenate nanostructured lipids carriers polyoxyethylene 40 stearate trans-resveratrol tyrosinase 

References

  1. 1.
    Shimada E, Aida K, Sugawara T, Hirata T. Inhibitory effect of topical maize glucosylceramide on skin photoaging in UVA-irradiated hairless mice. J Oleo Sci [Internet]. 2011;60:321–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21606620 CrossRefGoogle Scholar
  2. 2.
    Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res [Internet]. 2003;16(2):101–10.  https://doi.org/10.1034/j.1600-0749.2003.00029.x.CrossRefGoogle Scholar
  3. 3.
    Ndiaye M, Philippe C, Mukhtar H, Ahmad N. The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch Biochem Biophys. 2011;508(2):164–70.  https://doi.org/10.1016/j.abb.2010.12.030.CrossRefGoogle Scholar
  4. 4.
    Williams KA, Kolappswamy K, DeTolla LJ, Vucenik I. Effect of inositol hexaphosphate against UVB damage in HaCaT cells and skin carcinogenesis in SKH1 hairless mice. Comp Med. 2011;61:39–44.Google Scholar
  5. 5.
    Van Nieuwpoort F, Smit NPM, Kolb R, Van Der Meulen H, Koerten H, Pavel S. Tyrosine-induced melanogenesis shows differences in morphologic and melanogenic preferences of melanosomes from light and dark skin types. J Invest Dermatol [Internet]. 2004;122(5):1251–5.  https://doi.org/10.1111/j.0022-202X.2004.22533.x.CrossRefGoogle Scholar
  6. 6.
    Jimbow K, Minamitsuji Y. Topical therapies for melasma and disorders of hyperpigmentation. Dermatol Ther. 2001;14(1):35–45.  https://doi.org/10.1046/j.1529-8019.2001.014001035.x.CrossRefGoogle Scholar
  7. 7.
    Satooka H, Kubo I. Resveratrol as a k cat type inhibitor for tyrosinase: potentiated melanogenesis inhibitor. Bioorganic Med Chem [Internet]. 2012;20(2):1090–9.  https://doi.org/10.1016/j.bmc.2011.11.030.CrossRefGoogle Scholar
  8. 8.
    Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL. Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res. 2010;54(1):7–16.  https://doi.org/10.1002/mnfr.200900437.CrossRefGoogle Scholar
  9. 9.
    Hung C-F, Lin Y-K, Huang Z-R, Fang J-Y. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol Pharm Bull. 2008;31(5):955–62.  https://doi.org/10.1248/bpb.31.955.CrossRefGoogle Scholar
  10. 10.
    Schaffazick SR, Guterres SS, De Lucca Freitas L, Pohlmann AR. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quim Nova. 2003;26(5):726–37.  https://doi.org/10.1590/S0100-40422003000500017.CrossRefGoogle Scholar
  11. 11.
    Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.  https://doi.org/10.1016/j.addr.2007.04.012.CrossRefGoogle Scholar
  12. 12.
    Gokce EH, Korkmaz E, Dellera E, Sandri G, Cristina Bonferoni M, Ozer O. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications. Int J Nanomedicine. 2012;7:1841–50.  https://doi.org/10.2147/IJN.S29710.CrossRefGoogle Scholar
  13. 13.
    Jose S, Anju SS, Cinu TA, Aleykutty NA, Thomas S, Souto EB. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm. 2014;474:6–13.  https://doi.org/10.1016/j.ijpharm.2014.08.003.CrossRefGoogle Scholar
  14. 14.
    Pandita D, Kumar S, Poonia N, Lather V. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res Int [Internet]. 2014;62:1165–74.  https://doi.org/10.1016/j.foodres.2014.05.059.CrossRefGoogle Scholar
  15. 15.
    Shrotriya SN, Ranpise NS, Vidhate BV. Skin targeting of resveratrol utilizing solid lipid nanoparticle-engrossed gel for chemically induced irritant contact dermatitis. Drug Delivery and Translational Research. 2017;7:37–52.CrossRefGoogle Scholar
  16. 16.
    Teskač K, Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm. 2010;390(1):61–9.  https://doi.org/10.1016/j.ijpharm.2009.10.011.CrossRefGoogle Scholar
  17. 17.
    Friedrich RB, Kann B, Coradini K, Offerhaus HL, Beck RCR, Windbergs M. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci [Internet]. 2015;78:204–13.  https://doi.org/10.1016/j.ejps.2015.07.018.CrossRefGoogle Scholar
  18. 18.
    Rigon RB, Fachinetti N, Severino P, Santana MHA Skin delivery and in vitro biological evaluation of trans-resveratrol-loaded solid lipid. Nanoparticles 2016;1–14.Google Scholar
  19. 19.
    Neves AR, Lúcio M, Martins S, Lima JLC, Reis S. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomedicine. 2013;8:177–87.  https://doi.org/10.2147/IJN.S37840.CrossRefGoogle Scholar
  20. 20.
    Barbosa JP, Neves AR, Silva AM, Barbosa MA, Salette Reis M, Santos SG. Nanostructured lipid carriers loaded with resveratrol modulate human dendritic cells. Int J Nanomedicine. 2016;11:3501–16.  https://doi.org/10.2147/IJN.S108694.CrossRefGoogle Scholar
  21. 21.
    Cassano R, Ferrarelli T, Mauro MV, Cavalcanti P, Picci N, Trombino S. Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv. 2014;7544:1–10.CrossRefGoogle Scholar
  22. 22.
    Negi JS, Chattopadhyay P, Sharma AK, Ram V. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique. Eur J Pharm Sci. 2013;48:231–9.  https://doi.org/10.1016/j.ejps.2012.10.022 CrossRefGoogle Scholar
  23. 23.
    Negi JS, Chattopadhyay P, Sharma AK, Ram V. Development and evaluation of glyceryl behenate based solid lipid nanoparticles (SLNs) using hot self-nanoemulsification (SNE) technique. Arch Pharm Res. 2014;37(3):361–70.  https://doi.org/10.1007/s12272-013-0154-y.CrossRefGoogle Scholar
  24. 24.
    Sato MR, Oshiro Junior JA, Machado RT, de Souza PC, Campos DL, Pavan FR, et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther [Internet]. 2017;11:909–21. Available from: https://www.dovepress.com/nanostructured-lipid-carriers-for-incorporation-of-copperii-complexes--peer-reviewed-article-DDDT CrossRefGoogle Scholar
  25. 25.
    Eloy JO, Petrilli R, Fernando J, Marcelo H, Antonio R, Palma J, et al. Biointerfaces co-loaded paclitaxel/rapamycin liposomes: development, characterization and in vitro and in vivo evaluation for breast cancer therapy. Colloids and Surfaces B Biointerfaces [Internet]. 2016;141:74–82.  https://doi.org/10.1016/j.colsurfb.2016.01.032.CrossRefGoogle Scholar
  26. 26.
    Kobayashi Y, Kayahara H, Tadasa K, Nakamura T, Tanaka H. Synthesis of amino acid derivatives of Kojic acid and their tyrosinase inhibitory activity. Biosci Biotechnol Biochem [Internet]. 1995;59(9):1745–6.  https://doi.org/10.1271/bbb.59.1745.CrossRefGoogle Scholar
  27. 27.
    Li W, Zhou J, Xu Y. Study of the in vitro cytotoxicity testing of medical devices (review). Biomed Reports 2015;617–20. Doi:  https://doi.org/10.3892/br.2015.481
  28. 28.
    Abd-Elbary A, Tadros MI, Alaa-Eldin AA. Sucrose stearate-enriched lipid matrix tablets of etodolac: modulation of drug release, diffusional modeling and structure elucidation studies. AAPS PharmSciTech. 2013;14:656–68.  https://doi.org/10.1208/s12249-013-9951-3.CrossRefGoogle Scholar
  29. 29.
    Krause B, Mende M, Pötschke P, Petzold G. Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time. Carbon NY. 2010;48:2746–54.CrossRefGoogle Scholar
  30. 30.
    Hu FQ, Jiang SP, Du YZ, Yuan H, Ye YQ, Zeng S. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surf B Biointerfaces. 2005;45(3–4):167–73.  https://doi.org/10.1016/j.colsurfb.2005.08.005.CrossRefGoogle Scholar
  31. 31.
    Lourenco C, Teixeira M, Simões S, Gaspar R. Steric stabilization: size and surface properties. Int J Pharm. 1996;138:1–12.CrossRefGoogle Scholar
  32. 32.
    Jain D, Athawale R, Bajaj A, Shrikhande S, Goel PN, Gude RP. Biointerfaces studies on stabilization mechanism and stealth effect of poloxamer 188 onto PLGA nanoparticles. Colloids Surf B. 2013;109:59–67.CrossRefGoogle Scholar
  33. 33.
    De Mello VA, Ricci-Júnior E. Encapsulation of naproxen in nanostructured system: structural characterization and in vitro release studies. Quim Nova. 2011;34(6):933–9.  https://doi.org/10.1590/S0100-40422011000600004.CrossRefGoogle Scholar
  34. 34.
    Bunjes H, Unruh T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv Drug Deliv Rev. 2007;59(6):379–402.  https://doi.org/10.1016/j.addr.2007.04.013.CrossRefGoogle Scholar
  35. 35.
    Eloy JO, Marchetti JM. Solid dispersions containing ursolic acid in Poloxamer 407 and PEG 6000: a comparative study of fusion and solvent methods. Powder Technol [Internet]. 2014;253:98–106.  https://doi.org/10.1016/j.powtec.2013.11.017.CrossRefGoogle Scholar
  36. 36.
    Ansari KA, Vavia PR, Trotta F, Cavalli R. Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech [Internet]. 2011;12:279–86.  https://doi.org/10.1208/s12249-011-9584-3.CrossRefGoogle Scholar
  37. 37.
    Lira AM, Arajo AAS, Baslio IDJ, Santos BLL, Santana DP, Macedo RO. Compatibility studies of lapachol with pharmaceutical excipients for the development of topical formulations. Thermochim Acta. 2007;457(1–2):1–6.  https://doi.org/10.1016/j.tca.2007.02.017.CrossRefGoogle Scholar
  38. 38.
    Omwoyo WN, Ogutu B, Oloo F, Swai H, Kalombo L, Melariri P, et al. Preparation, characterization, and optimization of primaquine-loaded solid lipid nanoparticles. Int J Nanomedicine. 2014;9:3865–74.  https://doi.org/10.2147/IJN.S62630.Google Scholar
  39. 39.
    Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol-loaded nanoparticles based on poly(epsilon-caprolactone) and poly(d,l-lactic-co-glycolic acid)–poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm. 2013;10:3871–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23968375CrossRefGoogle Scholar
  40. 40.
    Souza SD. A review of in vitro drug release test methods for nano-sized dosage forms. Adv Pharmaceutics. 2014.Google Scholar
  41. 41.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.  https://doi.org/10.1016/j.jconrel.2004.08.010.CrossRefGoogle Scholar
  42. 42.
    Singh R, Lillard W. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–23.CrossRefGoogle Scholar
  43. 43.
    Juère E, Florek J, Bouchoucha M, Jambhrunkar S, Wong KY, Popat A, et al. In vitro dissolution, cellular membrane permeability and anti-inflammatory response of resveratrol-encapsulated mesoporous silica nanoparticles. Mol Pharm [Internet]. 2017; acs.molpharmaceut.7b00529;  https://doi.org/10.1021/acs.molpharmaceut.7b00529.
  44. 44.
    Costa P, Lobo JMS. Modelling and comparison of dissolution profile. Eur J Pharm Sci. 2001;13:123–33.CrossRefGoogle Scholar
  45. 45.
    Higuchi T. Mechanism of sustained-action medication. J Pharm Sci. 1963;52:1145–9.CrossRefGoogle Scholar
  46. 46.
    Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm. 1983;15(1):25–35.  https://doi.org/10.1016/0378-5173(83)90064-9.CrossRefGoogle Scholar
  47. 47.
    Schmolka IR. Artificial skin. I. Preparation and properties treatment of burns. J Biomed Mater Res. 1972;6:571–82.CrossRefGoogle Scholar
  48. 48.
    Rodrigues F, Gaspar C, Palmeira-de-Oliveira A, Sarmento B, Helena Amaral M, Oliveira MB. Application of coffee silverskin in cosmetic formulations: physical/antioxidant stability studies and cytotoxicity effects. Drug Dev Ind Pharm [Internet]. 2015;0:1–8.  https://doi.org/10.3109/03639045.2015.1035279.Google Scholar
  49. 49.
    Kim DH, Lee SH, Kim KN, Kim KM, Shim IB, Lee YK. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application. J Magn Magn Mater. 2005;293(1):287–92.  https://doi.org/10.1016/j.jmmm.2005.02.078.CrossRefGoogle Scholar
  50. 50.
    Smit N, Vicanova J, Pavel S. The hunt for natural skin whitening agents. Int J Mol Sci. 2009;10:5326–49.CrossRefGoogle Scholar
  51. 51.
    Bernard P, Berthon JY. Resveratrol: an original mechanism on tyrosinase inhibition. Int J Cosmet Sci. 2000;22(3):219–26.  https://doi.org/10.1046/j.1467-2494.2000.00019.x.CrossRefGoogle Scholar
  52. 52.
    Ryu JH, Seok JK, An SM, Baek JH, Koh JS, Boo YC. A study of the human skin-whitening effects of resveratryl triacetate. Arch Dermatol Res. 2015;307(3):239–47.  https://doi.org/10.1007/s00403-015-1556-0.CrossRefGoogle Scholar
  53. 53.
    Lee TH, Kang JH, Seo JO, Baek SH, Moh SH, Chae JK, et al. Anti-melanogenic potentials of nanoparticles from calli of resveratrol-enriched rice against UVB-induced hyperpigmentation in guinea pig skin. Biomol Ther. 2016;24(1):85–93.  https://doi.org/10.4062/biomolther.2015.165.CrossRefGoogle Scholar
  54. 54.
    Huang Y, Vecchio D, Avci P, Yin R, Garcia-diaz M, Hamblin MR. Melanoma resistance to photodynamic therapy: new insights. J Biol Chem. 2013;394:239–50.Google Scholar
  55. 55.
    Slominski A, Zbytek B, Slominski R. Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int J Cancer [Internet]. 2009;124:1470–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19085934 CrossRefGoogle Scholar
  56. 56.
    Sato MEO, Gomara F, Pontarolo R, Andreazza IF, Zaroni M. Permeação cutânea in vitro do ácido kójico. Rev Bras Ciências Farm. 2007;43(2):195–203.  https://doi.org/10.1590/S1516-93322007000200005.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2018

Authors and Affiliations

  • Naiara Fachinetti
    • 1
  • Roberta Balansin Rigon
    • 1
  • Josimar O. Eloy
    • 1
  • Mariana Rillo Sato
    • 1
  • Karen Cristina dos Santos
    • 1
  • Marlus Chorilli
    • 1
  1. 1.School of Pharmaceutical Sciences, Campus Araraquara, Department of Drugs and MedicinesUNESP-São Paulo State UniversitySão PauloBrazil

Personalised recommendations