Advertisement

AAPS PharmSciTech

, Volume 19, Issue 5, pp 1998–2008 | Cite as

Development of Itraconazole Tablets Containing Viscous KinetiSol Solid Dispersions: In Vitro and In Vivo Analysis in Dogs

  • Justin M. Keen
  • Justin S. LaFountaine
  • Justin R. Hughey
  • Dave A. Miller
  • James W. McGinity
Research Article Theme: Applications of KinetiSol® for Advanced Amorphous Solid Dispersions
Part of the following topical collections:
  1. Theme: Applications of KinetiSol for Advanced Amorphous Solid Dispersions

Abstract

The formulation factors relevant to developing immediate and controlled release dosage forms containing poorly soluble drugs dispersed in amorphous systems are poorly understood. While the utility of amorphous solid dispersions is becoming apparent in the pharmaceutical marketplace, literature reports tend to concentrate on the development of solid dispersion particulates, which then must be formulated into a tablet. Amorphous solid dispersions of itraconazole in high molecular weight hydroxypropyl methylcellulose were prepared by KinetiSol® Dispersing and tablets were formulated to immediately disintegrate or control the release of itraconazole. Formulated tablets were evaluated by two non-sink dissolution methodologies and the dosage form properties that controlled the gelling tendency of the dispersion carrier, hydroxypropyl methylcellulose, were investigated. Selected formulations were evaluated in an exploratory beagle dog pharmacokinetic study; the results of which indicate potential for a prolonged absorption phase relative to the commercially extruded control.

KEY WORDS

solubility enhancement kinetisol solid dispersion 

Notes

Compliance with Ethical Standards

Preclinical analysis was performed at Charles River Laboratories (Wilmington, MA), Institutional Animal Care and Use Committee (IACUC) approval number P06092010.

References

  1. 1.
    Chiou WL, Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci. 1971;60(9):1281–302.  https://doi.org/10.1002/jps.2600600902.CrossRefPubMedGoogle Scholar
  2. 2.
    Sekiguchi K, Obi N, Ueda Y. Studies on absorption of eutectic mixture. II. Absorption of fused conglomerates of chloramphenicol and urea in rabbits. Chem Pharm Bull (Tokyo). 1964;12(2):134–44.CrossRefGoogle Scholar
  3. 3.
    Keseru GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov. 2009;8(3):203–12. http://www.nature.com/nrd/journal/v8/n3/suppinfo/nrd2796_S1.htmlCrossRefPubMedGoogle Scholar
  4. 4.
    Alonzo DE, Gao Y, Zhou D, Mo H, Zhang GGZ, Taylor LS. Dissolution and precipitation behavior of amorphous solid dispersions. J Pharm Sci. 2011;100(8):3316–31.  https://doi.org/10.1002/jps.22579.CrossRefPubMedGoogle Scholar
  5. 5.
    Janssens S, Van den Mooter G. Review: physical chemistry of solid dispersions. J Pharm Pharmacol. 2009;61(12):1571–86.  https://doi.org/10.1211/jpp.61.12.0001.CrossRefPubMedGoogle Scholar
  6. 6.
    Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e79–85.  https://doi.org/10.1016/j.ddtec.2011.10.002. CrossRefGoogle Scholar
  7. 7.
    Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.  https://doi.org/10.1021/mp8000793.CrossRefPubMedGoogle Scholar
  8. 8.
    Repka MA, Majumdar S, Kumar Battu S, Srirangam R, Upadhye SB. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5(12):1357–76.  https://doi.org/10.1517/17425240802583421.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hughey J, DiNunzio J, Bennett R, Brough C, Miller D, Ma H, et al. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol® dispersing. AAPS PharmSciTech. 2010;11(2):760–74.  https://doi.org/10.1208/s12249-010-9431-y.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    DiNunzio JC, Brough C, Miller DA, Williams RO, McGinity JW. Fusion processing of itraconazole solid dispersions by KinetiSol® dispersing: a comparative study to hot-melt extrusion. J Pharm Sci. 2010;99(3):1239–53.  https://doi.org/10.1002/jps.21893.
  11. 11.
    DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams Iii RO, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot-melt extrusion and KinetiSol® dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51.  https://doi.org/10.1016/j.ejpb.2009.09.007.
  12. 12.
    Hughey JR, Keen JM, Miller DA, Brough C, McGinity JW. Preparation of viscous solid dispersion systems by hot-melt extrusion and KinetiSol® dispersing: polymer screening and thermal stability. Int J Pharm. 2012;438:11–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Hughey JR, Keen JM, Brough C, Saeger S, McGinity JW. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® dispersing. Int J Pharm. 2011;419(1–2):222–30.  https://doi.org/10.1016/j.ijpharm.2011.08.007.CrossRefPubMedGoogle Scholar
  14. 14.
    Broadhead J, Edmond Rouan SK, Rhodes CT. The spray drying of pharmaceuticals. Drug Dev Ind Pharm. 1992;18(11–12):1169–206.  https://doi.org/10.3109/03639049209046327.CrossRefGoogle Scholar
  15. 15.
    Kolter K, Karl M, Nalawade S, Rottmann N. Hot-melt extrusion with BASF pharma polymers: extrusion compendium. In: BASF, editor. Ludwigshafen, Germany;2010.Google Scholar
  16. 16.
    Yoo S, Kang E, Shin B, Jun H, Lee S-H, Lee K, et al. Interspecies comparison of the oral absorption of itraconazole in laboratory animals. Arch Pharm Res. 2002;25(3):387–91.  https://doi.org/10.1007/bf02976644.CrossRefPubMedGoogle Scholar
  17. 17.
    Miller D, DiNunzio J, Yang W, McGinity J, Williams R. Targeted intestinal delivery of supersaturated itraconazole for improved oral absorption. Pharm Res. 2008;25(6):1450–9.  https://doi.org/10.1007/s11095-008-9543-1.CrossRefPubMedGoogle Scholar
  18. 18.
    DiNunzio JC, Miller DA, Yang W, McGinity JW, Williams RO. Amorphous compositions using concentration enhancing polymers for improved bioavailability of itraconazole. Mol Pharm. 2008;5(6):968–80.  https://doi.org/10.1021/mp800042d.CrossRefPubMedGoogle Scholar
  19. 19.
    Mellaerts R, Mols R, Jammaer JAG, Aerts CA, Annaert P, Van Humbeeck J, et al. Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. Eur J Pharm Biopharm. 2008;69(1):223–30.  https://doi.org/10.1016/j.ejpb.2007.11.006.CrossRefPubMedGoogle Scholar
  20. 20.
    Vaughn JM, McConville JT, Burgess D, Peters JI, Johnston KP, Talbert RL, et al. Single dose and multiple dose studies of itraconazole nanoparticles. Eur J Pharm Biopharm. 2006;63(2):95–102.  https://doi.org/10.1016/j.ejpb.2006.01.006.CrossRefPubMedGoogle Scholar
  21. 21.
    Hoeben BJ, Burgess DS, McConville JT, Najvar LK, Talbert RL, Peters JI, et al. In vivo efficacy of aerosolized nanostructured itraconazole formulations for prevention of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2006;50(4):1552–4.  https://doi.org/10.1128/aac.50.4.1552-1554.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche M-P, et al. Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci. 2005;24(2–3):179–86.  https://doi.org/10.1016/j.ejps.2004.10.005.CrossRefPubMedGoogle Scholar
  23. 23.
    Francois M, Snoeckx E, Putteman P, Wouters F, De Proost E, Delaet U, et al. A mucoadhesive, cyclodextrin-based vaginal cream formulation of itraconazole. AAPS J. 2003;5(1):50–4.  https://doi.org/10.1208/ps050105.CrossRefGoogle Scholar
  24. 24.
    Baert L, Verreck G, Thone D. In: States U, editor. Antifungal compositions with improved bioavailability. United States: Janssen Pharmaceutica; 2006.Google Scholar
  25. 25.
    Baert L, Verreck G, Thone D. Antifungal compositions with improved bioavailability. In: States U, editor.: Janssen Pharmaceutica; 2003.Google Scholar
  26. 26.
    Miller DA, DiNunzio JC, Yang W, McGinity JW, Williams RO. Enhanced in vivo absorption of itraconazole via stabilization of supersaturation following acidic-to-neutral pH transition. Drug Dev Ind Pharm. 2008;34(8):890–902.  https://doi.org/10.1080/03639040801929273.CrossRefPubMedGoogle Scholar
  27. 27.
    Keary CM. Characterization of METHOCEL cellulose ethers by aqueous SEC with multiple detectors. Carbohydr Polym. 2001;45(3):293–303.CrossRefGoogle Scholar
  28. 28.
    Tanaka N, Imai K, Okimoto K, Ueda S, Tokunaga Y, Ibuki R, et al. Development of novel sustained-release system, disintegration-controlled matrix tablet (DCMT) with solid dispersion granules of nilvadipine (II): in vivo evaluation. J Control Release. 2006;112(1):51–6.  https://doi.org/10.1016/j.jconrel.2006.01.020.CrossRefPubMedGoogle Scholar
  29. 29.
    Srinarong P, Faber JH, Visser MR, Hinrichs WLJ, Frijlink HW. Strongly enhanced dissolution rate of fenofibrate solid dispersion tablets by incorporation of superdisintegrants. Eur J Pharm Biopharm. 2009;73(1):154–61.  https://doi.org/10.1016/j.ejpb.2009.05.006. CrossRefPubMedGoogle Scholar
  30. 30.
    Hughey JR, Keen JM, Miller DA, Kolter K, Langley N, McGinity JW. The use of inorganic salts to improve the dissolution characteristics of tablets containing Soluplus®-based solid dispersions. Eur J Pharm Sci. 2013;48(4–5):758–66.  https://doi.org/10.1016/j.ejps.2013.01.004. CrossRefPubMedGoogle Scholar
  31. 31.
    Gao Y, Carr RA, Spence JK, Wang WW, Turner TM, Lipari JM, et al. A pH-dilution method for estimation of biorelevant drug solubility along the gastrointestinal tract: application to physiologically based pharmacokinetic modeling. Mol Pharm. 2010;7(5):1516–26.  https://doi.org/10.1021/mp100157s.CrossRefPubMedGoogle Scholar
  32. 32.
    Gibbs JH, DiMarzio EA. Nature of the glass transition and the glassy state. J Chem Phys. 1958;28(3):373–83.  https://doi.org/10.1063/1.1744141.CrossRefGoogle Scholar
  33. 33.
    Fox TG, Flory PJ. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys. 1950;21(6):581–91.  https://doi.org/10.1063/1.1699711.CrossRefGoogle Scholar
  34. 34.
    Hancock BC, Shamblin SL, Zografi G. Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res. 1995;12(6):799–806.  https://doi.org/10.1023/a:1016292416526. CrossRefPubMedGoogle Scholar
  35. 35.
    Six K, Verreck G, Peeters J, Augustijns P, Kinget R, Van den Mooter G. Characterization of glassy itraconazole: a comparative study of its molecular mobility below Tg with that of structural analogues using MTDSC. Int J Pharm. 2001;213(1–2):163–73.  https://doi.org/10.1016/S0378-5173(00)00662-1.
  36. 36.
    Berndl G, Degenhardt M, Maegerlein M, Dispersyn G. Itraconazole compositions with improved bioavailability. In: States U, editor. United States: Abbot GmbH&Co.; 2013.Google Scholar
  37. 37.
    Denny PJ. Compaction equations: a comparison of the Heckel and Kawakita equations. Powder Technol. 2002;127(2):162–72.  https://doi.org/10.1016/S0032-5910(02)00111-0.CrossRefGoogle Scholar
  38. 38.
    Botzolakis JE, Augsburger LL. The role of disintegrants in hard-gelatin capsules. J Pharm Pharmacol. 1984;36(2):77–84.  https://doi.org/10.1111/j.2042-7158.1984.tb02998.x.
  39. 39.
    Augsburger LL, Brzeczko AW, Shah U, Hahm HA. Super disintegrants: characterization and function. Enc Pharm Technol. 2006;3553–67.Google Scholar
  40. 40.
    Malamataris S, Karidas T, Goidas P. Effect of particle size and sorbed moisture on the compression behaviour of some hydroxypropyl methylcellulose (HPMC) polymers. Int J Pharm. 1994;103(3):205–15.  https://doi.org/10.1016/0378-5173(94)90170-8. CrossRefGoogle Scholar
  41. 41.
    Pingali K, Mendez R, Lewis D, Michniak-Kohn B, Cuitino A, Muzzio F. Mixing order of glidant and lubricant—influence on powder and tablet properties. Int J Pharm. 2011;409(1–2):269–77.  https://doi.org/10.1016/j.ijpharm.2011.02.032.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Joshi SC. Sol-gel behavior of hydroxypropyl methylcellulose (HPMC) in ionic media including drug release. Materials. 2011;4(10):1861–905.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Conti S, Maggi L, Segale L, Ochoa Machiste E, Conte U, Grenier P, et al. Matrices containing NaCMC and HPMC: 1. Dissolution performance characterization. Int J Pharm. 2007;333(1–2):136–42.  https://doi.org/10.1016/j.ijpharm.2006.11.059. CrossRefPubMedGoogle Scholar
  44. 44.
    Lee PI. Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions. Int J Pharm. 2011;418(1):18–27.  https://doi.org/10.1016/j.ijpharm.2011.01.019. CrossRefPubMedGoogle Scholar
  45. 45.
    Tran P, Tran T, Park J, Lee B-J. Controlled release systems containing solid dispersions: strategies and mechanisms. Pharm Res. 2011;28(10):2353–78.  https://doi.org/10.1007/s11095-011-0449-y.CrossRefPubMedGoogle Scholar
  46. 46.
    Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res. 1998;15(5):698–705.  https://doi.org/10.1023/a:1011910801212. CrossRefPubMedGoogle Scholar
  47. 47.
    Curatolo W, Nightingale J, Herbig S. Utility of Hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res. 2009;26(6):1419–31.  https://doi.org/10.1007/s11095-009-9852-z.CrossRefPubMedGoogle Scholar
  48. 48.
    Tho I, Liepold B, Rosenberg J, Maegerlein M, Brandl M, Fricker G. Formation of nano/micro-dispersions with improved dissolution properties upon dispersion of ritonavir melt extrudate in aqueous media. Eur J Pharm Sci. 2010;40(1):25–32.  https://doi.org/10.1016/j.ejps.2010.02.003.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang Y, Cremer PS. Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol. 2006;10(6):658–63.  https://doi.org/10.1016/j.cbpa.2006.09.020.CrossRefPubMedGoogle Scholar
  50. 50.
    Akimoto M, Nagahata N, Furuya A, Fukushima K, Higuchi S, Suwa T. Gastric pH profiles of beagle dogs and their use as an alternative to human testing. Eur J Pharm Biopharm. 2000;49(2):99–102.  https://doi.org/10.1016/S0939-6411(99)00070-3. CrossRefPubMedGoogle Scholar
  51. 51.
    Garren KW, Rahim S, Marsh K, Morris JB. Bioavailability of generic ritonavir and lopinavir/ritonavir tablet products in a dog model. J Pharm Sci. 2010;99(2):626–31.  https://doi.org/10.1002/jps.21712. CrossRefPubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2017

Authors and Affiliations

  1. 1.Division of Pharmaceutics, College of PharmacyThe University of Texas at AustinAustinUSA
  2. 2.DisperSol Technologies, LLCGeorgetownUSA
  3. 3.Banner Life SciencesHigh PointUSA

Personalised recommendations