Skip to main content
Log in

Study of the Potential of Amphiphilic Conetworks Based on Poly(2-ethyl-2-oxazoline) as New Platforms for Delivery of Drugs with Limited Solubility

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Thermoresponsive amphiphilic conetworks comprising poly(2-ethyl-2-oxazoline) (PEtOx), 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate segments have been studied as new platforms for delivery of drug with limited solubility. Series of conetworks of varied composition were synthesized and swelling kinetics in aqueous media and ethanol were followed. The platforms were loaded with the hydrophobic drug ibuprofen by swelling in its ethanol solution. The structure and properties of the drug carriers were investigated by scanning electron microscopy and differential scanning calorimetry. The release kinetics profiles of ibuprofen from the studied platform were established. The investigation proved the feasibility of the PEtOx-based amphiphilic conetworks as highly effective platforms for sustained ibuprofen delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Cohen Stuart MA, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–13.

    Article  CAS  Google Scholar 

  2. Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60.

    Article  CAS  Google Scholar 

  3. Kostova B, Kamenska E, Ivanov I, Momekov G, Rachev D, Georgiev G. Verapamil hydrochloride release characteristics from new copolymer zwitterionic matrix tablets. Pharm Dev Tech. 2008;13:311–22.

    Article  CAS  Google Scholar 

  4. Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009;4:022001. doi:10.1088/1748-6041/4/2/022001.

    Article  PubMed  Google Scholar 

  5. Kamenska E, Kostova B, Ivanov I, Rachev D, Georgiev G. Synthesis and characterization of zwitterionic copolymers as matrices for sustained metoprolol tartrate delivery. J Biomater Sci Polym Ed. 2009;20(2):181–97.

    Article  PubMed  CAS  Google Scholar 

  6. Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymer. 2011;3:1215–42.

    Article  CAS  Google Scholar 

  7. Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54:37–51.

    Article  PubMed  CAS  Google Scholar 

  8. He C, Kim S, Lee D. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Contr Release. 2008;127:189–207.

    Article  CAS  Google Scholar 

  9. Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications—a review. Eur J Pharm Biopharm. 2008;68:34–45.

    Article  PubMed  CAS  Google Scholar 

  10. Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS. Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E, editors. Topics in tissue engineering. Vol. 3, Chap 6. Oulu: Biomaterials and Tissue Engineering Group; 2007.

  11. Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.

    Article  CAS  Google Scholar 

  12. Bromberg L, Temchenko M, Hatton TA. Dually responsive microgels from polyether-modified poly(acrylic acid): swelling and drug loading. Langmuir. 2002;18:4944–52.

    Article  CAS  Google Scholar 

  13. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54:3–12.

    Article  PubMed  CAS  Google Scholar 

  14. Xia X, Hu Z, Marquez M. Physically bonded nanoparticle networks: a novel drug delivery system. J Contr Release. 2005;103:21–30.

    Article  CAS  Google Scholar 

  15. Gu J, Xia F, Wub Y, Qu X, Yang Z, Jiang L. Programmable delivery of hydrophilic drug using dually responsive hydrogel cages. J Contr Release. 2007;117:396–402.

    Article  CAS  Google Scholar 

  16. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Contr Release. 2002;82:189–212.

    Article  CAS  Google Scholar 

  17. Chun K, Lee J, Kim S, Park T. Controlled release of plasmid DNA from photo-cross-linked Pluronic hydrogels. Biomaterials. 2005;26:3319–26.

    Article  PubMed  CAS  Google Scholar 

  18. Mawad D, Fostera J, Lautoa A. Drug-delivery study and estimation of polymer-solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm. 2008;360:231–5.

    Article  PubMed  CAS  Google Scholar 

  19. Cohn D, Sosnik A, Levy A. Improved reverse thermo-responsive polymeric systems. Biomaterials. 2003;24:3707–14.

    Article  PubMed  CAS  Google Scholar 

  20. Tomalia DA, Sheets DP. Homopolymerisation of 2-alkyl- and 2-aryl-2- oxazolines. J Polym Sci A Polym Chem. 1966;4:2253–65.

    Article  CAS  Google Scholar 

  21. Levy A, Litt M. 1,3-Oxazolines with hydroxy-, acetoxy-, and carboxymethyl-alkyl groups in the 2 position and their polymers. J Polym Sci A Polym Chem. 1968;6(7):1883–94.

    Article  CAS  Google Scholar 

  22. Adams N, Schubert U. Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59:1504–20.

    Article  PubMed  CAS  Google Scholar 

  23. Weber C, Hoogenboom R, Schubert US. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci. 2012;37:686–714.

    Article  CAS  Google Scholar 

  24. Nuyken O, Weberskirch R, Kotre T, Schoenfelder D, Woerndle A. Polymers for micellar catalysis. Polym Mater Org Synth Catal. 2003;1:277–304.

    Google Scholar 

  25. Choi HJ, Brooks E, Montemagno CD. Synthesis and characterization of nanoscale biomimetic polymer vesicles and polymer membranes for bioelectronic applications. Nanotechnology. 2005;16(5):143–9.

    Article  Google Scholar 

  26. Jordan R, Foertig A, Purrucker O, Tanaka M, Gleixner R. Tailored polymers for the construction of biomimetic cell membranes. Polym Prepr. 2006;47(2):197–8.

    CAS  Google Scholar 

  27. Osada K, Kataoka K. Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. Prog Polym Sci. 2006;202:113–53.

    CAS  Google Scholar 

  28. Hruby M, Filippov S, Panek J, Novakova M, Mackova H, Kucka J, Vetvicka D, Ulbrich K. Polyoxazoline thermoresponsive micelles as radionuclide delivery systems. Macromol Biosci. 2010;10(8):916–24.

    Article  PubMed  CAS  Google Scholar 

  29. Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, Jordan R, Kabanov AV. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–9.

    Article  PubMed  CAS  Google Scholar 

  30. Hoogenboom R, Mero A, Pasut G, Via LD, Fijten MWM, Schubert US, Veronese FM. Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates. J Contr Release. 2008;125:87–95.

    Article  Google Scholar 

  31. Kronek J, Kronekova Z, Luston J, Paulovicova E, Paulovicova L, Mendrek B. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines). J Mater Sci Mater Med. 2011;22:1725–34.

    Article  PubMed  CAS  Google Scholar 

  32. Luxenhofer R, Sahay G, Schulz A, Alakhova D, Bronich TK, Jordan R, Kabanov AV. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J Contr Release. 2011;53:73–82.

    Article  Google Scholar 

  33. Erdodi G, Kennedy JP. Amphiphilic conetworks: definition, synthesis, applications. Prog Polym Sci. 2006;31:1–18.

    Article  CAS  Google Scholar 

  34. Tiller JC, Sprich C, Hartmann L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Contr Release. 2005;103:355–67.

    Article  CAS  Google Scholar 

  35. Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Comm. 2012;33(19):1613–31.

    Article  CAS  Google Scholar 

  36. Claeys B, Vervaeck A, Vervaet C, Remon JP, Hoogenboom R, De Geest BG. Poly(2-ethyl-2-oxazoline) as matrix excipient for drug formulation by hot melt extrusion and injection molding. Macromol Rapid Comm. 2012;33(19):1701–7.

    Article  CAS  Google Scholar 

  37. El-Hag Ali A, Al Arifi AS. Swelling and drug release profile of poly(2-ethyl-2-oxazoline)-based hydrogels prepared by gamma radiation-induced copolymerization. J Appl Polym Sci. 2011;120(5):3071–7.

    Article  CAS  Google Scholar 

  38. Christova D, Velichkova R, Goethals E, Prez F. Amphiphilic segmented polymer networks based on poly(2-alkyl-2-oxazoline) and poly(methyl methacrylate). Polymer. 2002;43:4590–5.

    Article  Google Scholar 

  39. Christova D, Velichkova R, Loos W, Goethals E, Prez F. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer. 2003;44:2255–61.

    Article  CAS  Google Scholar 

  40. Chen CH, Wilson J, Chen W, Davis RM, Riffle JS. A light-scattering study of poly(2-alkyl-2-oxazoline)s: effect of temperature and solvent type. Polymer. 1994;35:3587–91.

    Article  CAS  Google Scholar 

  41. Çaykara T, Özyürek C, Kantoğlu Ö, Güven O. Influence of gel composition on the solubility parameter of poly(2-hydroxyethyl methacrylate-itaconic acid) hydrogels. Polym Sci Part B Polym Phys. 2002;40:1995–2003.

    Article  Google Scholar 

  42. Taylor LD, Cerankowski LD. Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solution—a study of lower consolute behavior. J Polym Sci. 1975;13:2551–70.

    CAS  Google Scholar 

  43. Pottast H, Dressman JB, Juninger HE, Midha KK, Oeser H, Shah VP, Vogelpoel H, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94:2121–31.

    Article  Google Scholar 

  44. Christova D, Velichkova R, Goethals EJ. Bis-macromonomers of 2-alkyl-2-oxazolines-synthesis and polymerization. Macromol Rapid Comm. 1997;18:1067–70.

    Article  CAS  Google Scholar 

  45. Ivan B, Kennedy JP, Mackey PW. Amphiphilic networks. In: Dunn RLR, Ottenbrite M, editors. Polymer drugs and delivery systems. Washington, DC: ACS; 1991. p.194–202. (ACS symposium book series 469).

  46. Iván B, Domján A, Erdıdi G, Fodor CS, Haraszti M, Kali G, Mezey P, Szabó Á, Szabó SL, Szalai I, Thomann R, Mülhaupt R. Smart nanostructured amphiphilic polymer conetworks. Polym Mater Sci Eng. 2009;101:925–6.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial support by National Science Fund of Bulgaria (Project UNION, Grant # DCVP 02/2/2009) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darinka Christova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostova, B., Ivanova-Mileva, K., Rachev, D. et al. Study of the Potential of Amphiphilic Conetworks Based on Poly(2-ethyl-2-oxazoline) as New Platforms for Delivery of Drugs with Limited Solubility. AAPS PharmSciTech 14, 352–359 (2013). https://doi.org/10.1208/s12249-013-9923-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-013-9923-7

Key words

Navigation