AAPS PharmSciTech

, Volume 14, Issue 1, pp 352–359 | Cite as

Study of the Potential of Amphiphilic Conetworks Based on Poly(2-ethyl-2-oxazoline) as New Platforms for Delivery of Drugs with Limited Solubility

  • Bistra Kostova
  • Krasimira Ivanova-Mileva
  • Dimitar Rachev
  • Darinka ChristovaEmail author
Research Article


Thermoresponsive amphiphilic conetworks comprising poly(2-ethyl-2-oxazoline) (PEtOx), 2-hydroxyethyl methacrylate, and 2-hydroxypropyl acrylate segments have been studied as new platforms for delivery of drug with limited solubility. Series of conetworks of varied composition were synthesized and swelling kinetics in aqueous media and ethanol were followed. The platforms were loaded with the hydrophobic drug ibuprofen by swelling in its ethanol solution. The structure and properties of the drug carriers were investigated by scanning electron microscopy and differential scanning calorimetry. The release kinetics profiles of ibuprofen from the studied platform were established. The investigation proved the feasibility of the PEtOx-based amphiphilic conetworks as highly effective platforms for sustained ibuprofen delivery.

Key words

amphiphilic conetworks drug delivery systems polyoxazolines termoresponsive polymers 



Financial support by National Science Fund of Bulgaria (Project UNION, Grant # DCVP 02/2/2009) is gratefully acknowledged.


  1. 1.
    Cohen Stuart MA, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9:101–13.CrossRefGoogle Scholar
  2. 2.
    Peppas NA, Hilt JZ, Khademhosseini A, Langer R. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater. 2006;18:1345–60.CrossRefGoogle Scholar
  3. 3.
    Kostova B, Kamenska E, Ivanov I, Momekov G, Rachev D, Georgiev G. Verapamil hydrochloride release characteristics from new copolymer zwitterionic matrix tablets. Pharm Dev Tech. 2008;13:311–22.CrossRefGoogle Scholar
  4. 4.
    Bawa P, Pillay V, Choonara YE, du Toit LC. Stimuli-responsive polymers and their applications in drug delivery. Biomed Mater. 2009;4:022001. doi: 10.1088/1748-6041/4/2/022001.PubMedCrossRefGoogle Scholar
  5. 5.
    Kamenska E, Kostova B, Ivanov I, Rachev D, Georgiev G. Synthesis and characterization of zwitterionic copolymers as matrices for sustained metoprolol tartrate delivery. J Biomater Sci Polym Ed. 2009;20(2):181–97.PubMedCrossRefGoogle Scholar
  6. 6.
    Ward MA, Georgiou TK. Thermoresponsive polymers for biomedical applications. Polymer. 2011;3:1215–42.CrossRefGoogle Scholar
  7. 7.
    Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Adv Drug Deliv Rev. 2002;54:37–51.PubMedCrossRefGoogle Scholar
  8. 8.
    He C, Kim S, Lee D. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Contr Release. 2008;127:189–207.CrossRefGoogle Scholar
  9. 9.
    Klouda L, Mikos AG. Thermoresponsive hydrogels in biomedical applications—a review. Eur J Pharm Biopharm. 2008;68:34–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS. Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E, editors. Topics in tissue engineering. Vol. 3, Chap 6. Oulu: Biomaterials and Tissue Engineering Group; 2007.Google Scholar
  11. 11.
    Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.CrossRefGoogle Scholar
  12. 12.
    Bromberg L, Temchenko M, Hatton TA. Dually responsive microgels from polyether-modified poly(acrylic acid): swelling and drug loading. Langmuir. 2002;18:4944–52.CrossRefGoogle Scholar
  13. 13.
    Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54:3–12.PubMedCrossRefGoogle Scholar
  14. 14.
    Xia X, Hu Z, Marquez M. Physically bonded nanoparticle networks: a novel drug delivery system. J Contr Release. 2005;103:21–30.CrossRefGoogle Scholar
  15. 15.
    Gu J, Xia F, Wub Y, Qu X, Yang Z, Jiang L. Programmable delivery of hydrophilic drug using dually responsive hydrogel cages. J Contr Release. 2007;117:396–402.CrossRefGoogle Scholar
  16. 16.
    Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Contr Release. 2002;82:189–212.CrossRefGoogle Scholar
  17. 17.
    Chun K, Lee J, Kim S, Park T. Controlled release of plasmid DNA from photo-cross-linked Pluronic hydrogels. Biomaterials. 2005;26:3319–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Mawad D, Fostera J, Lautoa A. Drug-delivery study and estimation of polymer-solvent interaction parameter for bisacrylate ester-modified Pluronic hydrogels. Int J Pharm. 2008;360:231–5.PubMedCrossRefGoogle Scholar
  19. 19.
    Cohn D, Sosnik A, Levy A. Improved reverse thermo-responsive polymeric systems. Biomaterials. 2003;24:3707–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Tomalia DA, Sheets DP. Homopolymerisation of 2-alkyl- and 2-aryl-2- oxazolines. J Polym Sci A Polym Chem. 1966;4:2253–65.CrossRefGoogle Scholar
  21. 21.
    Levy A, Litt M. 1,3-Oxazolines with hydroxy-, acetoxy-, and carboxymethyl-alkyl groups in the 2 position and their polymers. J Polym Sci A Polym Chem. 1968;6(7):1883–94.CrossRefGoogle Scholar
  22. 22.
    Adams N, Schubert U. Poly(2-oxazolines) in biological and biomedical application contexts. Adv Drug Deliv Rev. 2007;59:1504–20.PubMedCrossRefGoogle Scholar
  23. 23.
    Weber C, Hoogenboom R, Schubert US. Temperature responsive bio-compatible polymers based on poly(ethylene oxide) and poly(2-oxazoline)s. Prog Polym Sci. 2012;37:686–714.CrossRefGoogle Scholar
  24. 24.
    Nuyken O, Weberskirch R, Kotre T, Schoenfelder D, Woerndle A. Polymers for micellar catalysis. Polym Mater Org Synth Catal. 2003;1:277–304.Google Scholar
  25. 25.
    Choi HJ, Brooks E, Montemagno CD. Synthesis and characterization of nanoscale biomimetic polymer vesicles and polymer membranes for bioelectronic applications. Nanotechnology. 2005;16(5):143–9.CrossRefGoogle Scholar
  26. 26.
    Jordan R, Foertig A, Purrucker O, Tanaka M, Gleixner R. Tailored polymers for the construction of biomimetic cell membranes. Polym Prepr. 2006;47(2):197–8.Google Scholar
  27. 27.
    Osada K, Kataoka K. Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. Prog Polym Sci. 2006;202:113–53.Google Scholar
  28. 28.
    Hruby M, Filippov S, Panek J, Novakova M, Mackova H, Kucka J, Vetvicka D, Ulbrich K. Polyoxazoline thermoresponsive micelles as radionuclide delivery systems. Macromol Biosci. 2010;10(8):916–24.PubMedCrossRefGoogle Scholar
  29. 29.
    Luxenhofer R, Schulz A, Roques C, Li S, Bronich TK, Batrakova EV, Jordan R, Kabanov AV. Doubly amphiphilic poly(2-oxazoline)s as high-capacity delivery systems for hydrophobic drugs. Biomaterials. 2010;31:4972–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoogenboom R, Mero A, Pasut G, Via LD, Fijten MWM, Schubert US, Veronese FM. Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: suitable alternatives to PEG-conjugates. J Contr Release. 2008;125:87–95.CrossRefGoogle Scholar
  31. 31.
    Kronek J, Kronekova Z, Luston J, Paulovicova E, Paulovicova L, Mendrek B. In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines). J Mater Sci Mater Med. 2011;22:1725–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Luxenhofer R, Sahay G, Schulz A, Alakhova D, Bronich TK, Jordan R, Kabanov AV. Structure-property relationship in cytotoxicity and cell uptake of poly(2-oxazoline) amphiphiles. J Contr Release. 2011;53:73–82.CrossRefGoogle Scholar
  33. 33.
    Erdodi G, Kennedy JP. Amphiphilic conetworks: definition, synthesis, applications. Prog Polym Sci. 2006;31:1–18.CrossRefGoogle Scholar
  34. 34.
    Tiller JC, Sprich C, Hartmann L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J Contr Release. 2005;103:355–67.CrossRefGoogle Scholar
  35. 35.
    Luxenhofer R, Han Y, Schulz A, Tong J, He Z, Kabanov AV, Jordan R. Poly(2-oxazoline)s as polymer therapeutics. Macromol Rapid Comm. 2012;33(19):1613–31.CrossRefGoogle Scholar
  36. 36.
    Claeys B, Vervaeck A, Vervaet C, Remon JP, Hoogenboom R, De Geest BG. Poly(2-ethyl-2-oxazoline) as matrix excipient for drug formulation by hot melt extrusion and injection molding. Macromol Rapid Comm. 2012;33(19):1701–7.CrossRefGoogle Scholar
  37. 37.
    El-Hag Ali A, Al Arifi AS. Swelling and drug release profile of poly(2-ethyl-2-oxazoline)-based hydrogels prepared by gamma radiation-induced copolymerization. J Appl Polym Sci. 2011;120(5):3071–7.CrossRefGoogle Scholar
  38. 38.
    Christova D, Velichkova R, Goethals E, Prez F. Amphiphilic segmented polymer networks based on poly(2-alkyl-2-oxazoline) and poly(methyl methacrylate). Polymer. 2002;43:4590–5.CrossRefGoogle Scholar
  39. 39.
    Christova D, Velichkova R, Loos W, Goethals E, Prez F. New thermo-responsive polymer materials based on poly(2-ethyl-2-oxazoline) segments. Polymer. 2003;44:2255–61.CrossRefGoogle Scholar
  40. 40.
    Chen CH, Wilson J, Chen W, Davis RM, Riffle JS. A light-scattering study of poly(2-alkyl-2-oxazoline)s: effect of temperature and solvent type. Polymer. 1994;35:3587–91.CrossRefGoogle Scholar
  41. 41.
    Çaykara T, Özyürek C, Kantoğlu Ö, Güven O. Influence of gel composition on the solubility parameter of poly(2-hydroxyethyl methacrylate-itaconic acid) hydrogels. Polym Sci Part B Polym Phys. 2002;40:1995–2003.CrossRefGoogle Scholar
  42. 42.
    Taylor LD, Cerankowski LD. Preparation of films exhibiting a balanced temperature dependence to permeation by aqueous solution—a study of lower consolute behavior. J Polym Sci. 1975;13:2551–70.Google Scholar
  43. 43.
    Pottast H, Dressman JB, Juninger HE, Midha KK, Oeser H, Shah VP, Vogelpoel H, Barends DM. Biowaiver monographs for immediate release solid oral dosage forms: ibuprofen. J Pharm Sci. 2005;94:2121–31.CrossRefGoogle Scholar
  44. 44.
    Christova D, Velichkova R, Goethals EJ. Bis-macromonomers of 2-alkyl-2-oxazolines-synthesis and polymerization. Macromol Rapid Comm. 1997;18:1067–70.CrossRefGoogle Scholar
  45. 45.
    Ivan B, Kennedy JP, Mackey PW. Amphiphilic networks. In: Dunn RLR, Ottenbrite M, editors. Polymer drugs and delivery systems. Washington, DC: ACS; 1991. p.194–202. (ACS symposium book series 469).Google Scholar
  46. 46.
    Iván B, Domján A, Erdıdi G, Fodor CS, Haraszti M, Kali G, Mezey P, Szabó Á, Szabó SL, Szalai I, Thomann R, Mülhaupt R. Smart nanostructured amphiphilic polymer conetworks. Polym Mater Sci Eng. 2009;101:925–6.Google Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2013

Authors and Affiliations

  • Bistra Kostova
    • 1
  • Krasimira Ivanova-Mileva
    • 2
  • Dimitar Rachev
    • 1
  • Darinka Christova
    • 2
    Email author
  1. 1.Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of PharmacyMedical University-SofiaSofiaBulgaria
  2. 2.Institute of PolymersBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations