The AAPS Journal

, 21:67 | Cite as

Mind the Gaps: Ontogeny of Human Brain P-gp and Its Impact on Drug Toxicity

  • Jean-Marie NicolasEmail author
  • Elizabeth C. M. de Lange
Review Article


Available data on human brain P-glycoprotein ontogeny during infancy and childhood are limited. This review discusses the current body of data relating to maturation of human brain P-glycoprotein including transporter expression levels in post-mortem human brain samples, in vivo transporter activity using probe substrates, surrogate marker endpoints, and extrapolations from animal models. Overall, the data tend to confirm that human brain P-glycoprotein activity keeps developing after birth, although with a developmental time frame that remains unclear. This knowledge gap is a concern given the critical role of brain P-glycoprotein in drug safety and efficacy, and the vulnerable nature of the pediatric population. Future research could include the measurement of brain P-glycoprotein activity across age groups using positron emission tomography or central pharmacodynamic responses. For now, caution is advised when extrapolating adult data to children aged younger than 2 years for drugs with P-glycoprotein-dependent central nervous system activity.


blood-brain barrier brain ontogeny pediatric P-glycoprotein 



The authors would like to acknowledge Laura Griffin, PhD, of iMed Comms, Macclesfield, UK, an Ashfield Company, part of UDG Healthcare plc for editing assistance that was funded by UCB Pharma in accordance with Good Publications Practice (GPP3) guidelines (

Compliance with Ethical Standards

Conflict of Interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9(3):215–36.Google Scholar
  2. 2.
    Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976;455(1):152–62.PubMedGoogle Scholar
  3. 3.
    Sadeque AJ, Wandel C, He H, Shah S, Wood AJ. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68(3):231–7.PubMedGoogle Scholar
  4. 4.
    Borron SW, Watts SH, Tull J, Baeza S, Diebold S, Barrow A. Intentional misuse and abuse of Loperamide: a new look at a drug with "low abuse potential". J Emerg Med. 2017;53(1):73–84.PubMedGoogle Scholar
  5. 5.
    Walenga JM, Adiguzel C. Drug and dietary interactions of the new and emerging oral anticoagulants. Int J Clin Pract. 2010;64(7):956–67.PubMedGoogle Scholar
  6. 6.
    Elmorsi Y, Barber J, Rostami-Hodjegan A. Ontogeny of hepatic drug transporters and relevance to drugs used in pediatrics. Drug Metab Dispos. 2016;44(7):992–8.PubMedGoogle Scholar
  7. 7.
    Mooij MG, Nies AT, Knibbe CA, Schaeffeler E, Tibboel D, Schwab M, et al. Development of human membrane transporters: drug disposition and pharmacogenetics. Clin Pharmacokinet. 2016;55(5):507–24.PubMedGoogle Scholar
  8. 8.
    Lam J, Koren G. P-glycoprotein in the developing human brain: a review of the effects of ontogeny on the safety of opioids in neonates. Ther Drug Monit. 2014;36(6):699–705.PubMedGoogle Scholar
  9. 9.
    Brouwer KL, Aleksunes LM, Brandys B, Giacoia GP, Knipp G, Lukacova V, et al. Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther. 2015;98(3):266–87.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Elzagallaai AA, Greff M, Rieder MJ. Adverse drug reactions in children: the double-edged sword of therapeutics. Clin Pharmacol Ther. 2017;101(6):725–35.PubMedGoogle Scholar
  11. 11.
    Conroy S, Choonara I, Impicciatore P, Mohn A, Arnell H, Rane A, et al. Survey of unlicensed and off label drug use in paediatric wards in European countries. European network for drug investigation in children. BMJ. 2000;320(7227):79–82.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Schumacher U, Mollgard K. The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain. Histochem Cell Biol. 1997;108(2):179–82.PubMedGoogle Scholar
  13. 13.
    Daood M, Tsai C, Ahdab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics. 2008;39(4):211–8.PubMedGoogle Scholar
  14. 14.
    Lam J, Baello S, Iqbal M, Kelly LE, Shannon PT, Chitayat D, et al. The ontogeny of P-glycoprotein in the developing human blood-brain barrier: implication for opioid toxicity in neonates. Pediatr Res. 2015;78(4):417–21.PubMedGoogle Scholar
  15. 15.
    Kellie SJ, Barbaric D, Koopmans P, Earl J, Carr DJ, de Graaf SS. Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing: a surrogate marker of brain penetration. Cancer. 2002;94(6):1815–20.PubMedGoogle Scholar
  16. 16.
    Li ST, Grossman DC, Cummings P. Loperamide therapy for acute diarrhea in children: systematic review and meta-analysis. PLoS Med. 2007;4(3):e98.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Chen LW, Chen JS, Tu YF, Wang ST, Wang LW, Tsai YS, et al. Age-dependent vulnerability of cyclosporine-associated encephalopathy in children. Eur J Paediatr Neurol. 2015;19(4):464–71.PubMedGoogle Scholar
  18. 18.
    Ose A, Kusuhara H, Yamatsugu K, Kanai M, Shibasaki M, Fujita T, et al. P-glycoprotein restricts the penetration of oseltamivir across the blood-brain barrier. Drug Metab Dispos. 2008;36(2):427–34.PubMedGoogle Scholar
  19. 19.
    Hatori A, Yui J, Yanamoto K, Yamasaki T, Kawamura K, Takei M, et al. Determination of radioactivity in infant, juvenile and adult rat brains after injection of anti-influenza drug [(1)(1)C]oseltamivir using PET and autoradiography. Neurosci Lett. 2011;495(3):187–91.PubMedGoogle Scholar
  20. 20.
    Soares RV, Do TM, Mabondzo A, Pons G, Chhun S. Ontogeny of ABC and SLC transporters in the microvessels of developing rat brain. Fundam Clin Pharmacol. 2016;30(2):107–16.PubMedGoogle Scholar
  21. 21.
    Takashima T, Yokoyama C, Mizuma H, Yamanaka H, Wada Y, Onoe K, et al. Developmental changes in P-glycoprotein function in the blood-brain barrier of nonhuman primates: PET study with R-11C-verapamil and 11C-oseltamivir. J Nucl Med. 2011;52(6):950–7.PubMedGoogle Scholar
  22. 22.
    Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, et al. Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci. 2011;100(9):3939–50.PubMedGoogle Scholar
  23. 23.
    Volk H, Potschka H, Loscher W. Immunohistochemical localization of P-glycoprotein in rat brain and detection of its increased expression by seizures are sensitive to fixation and staining variables. J Histochem Cytochem. 2005;53(4):517–31.PubMedGoogle Scholar
  24. 24.
    Toth K, Vaughan MM, Slocum HK, Arredondo MA, Takita H, Baker RM, et al. New immunohistochemical "sandwich" staining method for mdr1 P-glycoprotein detection with JSB-1 monoclonal antibody in formalin-fixed, paraffin-embedded human tissues. Am J Pathol. 1994;144(2):227–36.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Bartels AL, Kortekaas R, Bart J, Willemsen AT, de Klerk OL, de Vries JJ, et al. Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging. 2009;30(11):1818–24.PubMedGoogle Scholar
  26. 26.
    van Assema DM, Lubberink M, Boellaard R, Schuit RC, Windhorst AD, Scheltens P, et al. P-glycoprotein function at the blood-brain barrier: effects of age and gender. Mol Imaging Biol. 2012;14(6):771–6.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kosztyu P, Dolezel P, Vaclavikova R, Mlejnek P. Can the assessment of ABCB1 gene expression predict its function in vitro? Eur J Haematol. 2015;95(2):150–9.PubMedGoogle Scholar
  28. 28.
    De Lange ECM, Vd Berg DJ, Bellanti F, Voskuyl RA, Syvanen S. P-glycoprotein protein expression versus functionality at the blood-brain barrier using immunohistochemistry, microdialysis and mathematical modeling. Eur J Pharm Sci. 2018;124:61–70.PubMedGoogle Scholar
  29. 29.
    Bailly JD, Muller C, Jaffrezou JP, Demur C, Gassar G, Bordier C, et al. Lack of correlation between expression and function of P-glycoprotein in acute myeloid leukemia cell lines. Leukemia. 1995;9(5):799–807.PubMedGoogle Scholar
  30. 30.
    Vasquez EM, Petrenko Y, Jacobssen V, Sifontis NM, Testa G, Sankary H, et al. An assessment of P-glycoprotein expression and activity in peripheral blood lymphocytes of transplant candidates. Transplant Proc. 2005;37(1):175–7.PubMedGoogle Scholar
  31. 31.
    Krawczenko A, Bielawska-Pohl A, Wojtowicz K, Jura R, Paprocka M, Wojdat E, et al. Expression and activity of multidrug resistance proteins in mature endothelial cells and their precursors: a challenging correlation. PLoS One. 2017;12(2):e0172371.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Thews O, Gassner B, Kelleher DK, Schwerdt G, Gekle M. Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia. 2006;8(2):143–52.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931–7.PubMedGoogle Scholar
  34. 34.
    Buelke-Sam J. Comparative schedules of development in rats and humans: implications for developmental neurotoxicity testing. Annual meeting of the Society of Toxicology, Salt Lake City, 2003. p. Abstract no 820.Google Scholar
  35. 35.
    Schmitt G, Parrott N, Prinssen E, Barrow P. The great barrier belief: the blood-brain barrier and considerations for juvenile toxicity studies. Reprod Toxicol. 2017;72:129–35.PubMedGoogle Scholar
  36. 36.
    Allegaert K, van den Anker JN. Neonatal pain management: still in search for the holy grail. Int J Clin Pharmacol Ther. 2016;54(7):514–23.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Rodieux F, Gotta V, Pfister M, van den Anker JN. Causes and consequences of variability in drug transporter activity in pediatric drug therapy. J Clin Pharmacol. 2016;56(Suppl 7):S173–92.PubMedGoogle Scholar
  38. 38.
    Marsousi N, Desmeules JA, Rudaz S, Daali Y. Usefulness of PBPK modeling in incorporation of clinical conditions in personalized medicine. J Pharm Sci. 2017;106(9):2380–91.PubMedGoogle Scholar
  39. 39.
    Chaccour C, Hammann F, Rabinovich NR. Ivermectin to reduce malaria transmission I. pharmacokinetic and pharmacodynamic considerations regarding efficacy and safety. Malar J. 2017;16(1):161.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Viergever RF, Rademaker CM, Ghersi D. Pharmacokinetic research in children: an analysis of registered records of clinical trials. BMJ Open. 2011;1(1):e000221.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Roth-Cline M, Nelson RM. Microdosing studies in children: a US regulatory perspective. Clin Pharmacol Ther. 2015;98(3):232–3.PubMedGoogle Scholar
  42. 42.
    de Lange EC, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet. 2002;41(10):691–703.PubMedGoogle Scholar
  43. 43.
    Westerhout J, Smeets J, Danhof M, de Lange EC. The impact of P-gp functionality on non-steady state relationships between CSF and brain extracellular fluid. J Pharmacokinet Pharmacodyn. 2013;40(3):327–42.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the key to physiologically based model prediction of human CNS target site concentrations. AAPS J. 2017;19(4):891–909.PubMedGoogle Scholar
  45. 45.
    Yamamoto Y, Valitalo PA, van den Berg DJ, Hartman R, van den Brink W, Wong YC, et al. A generic multi-compartmental CNS distribution model structure for 9 drugs allows prediction of human brain target site concentrations. Pharm Res. 2017;34(2):333–51.PubMedGoogle Scholar
  46. 46.
    Nikisch G, Baumann P, Oneda B, Kiessling B, Weisser H, Mathe AA, et al. Cytochrome P450 and ABCB1 genetics: association with quetiapine and norquetiapine plasma and cerebrospinal fluid concentrations and with clinical response in patients suffering from schizophrenia. A pilot study. J Psychopharmacol. 2011;25(7):896–907.PubMedGoogle Scholar
  47. 47.
    Basic S, Hajnsek S, Bozina N, Filipcic I, Sporis D, Mislov D, et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure. 2008;17(6):524–30.PubMedGoogle Scholar
  48. 48.
    Rambeck B, Jurgens UH, May TW, Pannek HW, Behne F, Ebner A, et al. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy. Epilepsia. 2006;47(4):681–94.PubMedGoogle Scholar
  49. 49.
    Meineke I, Freudenthaler S, Hofmann U, Schaeffeler E, Mikus G, Schwab M, et al. Pharmacokinetic modelling of morphine, morphine-3-glucuronide and morphine-6-glucuronide in plasma and cerebrospinal fluid of neurosurgical patients after short-term infusion of morphine. Br J Clin Pharmacol. 2002;54(6):592–603.PubMedGoogle Scholar
  50. 50.
    de Lannoy IA, Mandin RS, Silverman M. Renal secretion of vinblastine, vincristine and colchicine in vivo. J Pharmacol Exp Ther. 1994;268(1):388–95.PubMedGoogle Scholar
  51. 51.
    Huang RS, Murry DJ, Foster DR. Role of xenobiotic efflux transporters in resistance to vincristine. Biomed Pharmacother. 2008;62(2):59–64.PubMedGoogle Scholar
  52. 52.
    Xia CQ, Smith PG. Drug efflux transporters and multidrug resistance in acute leukemia: therapeutic impact and novel approaches to mediation. Mol Pharmacol. 2012;82(6):1008–21.PubMedGoogle Scholar
  53. 53.
    Imrichova D, Coculova M, Messingerova L, Sulova Z, Breier A. Vincristine-induced expression of P-glycoprotein in MOLM-13 and SKM-1 acute myeloid leukemia cell lines is associated with coexpression of nestin transcript. Gen Physiol Biophys. 2014;33(4):425–31.PubMedGoogle Scholar
  54. 54.
    Huang R, Murry DJ, Kolwankar D, Hall SD, Foster DR. Vincristine transcriptional regulation of efflux drug transporters in carcinoma cell lines. Biochem Pharmacol. 2006;71(12):1695–704.PubMedGoogle Scholar
  55. 55.
    Wang F, Zhou F, Kruh GD, Gallo JM. Influence of blood-brain barrier efflux pumps on the distribution of vincristine in brain and brain tumors. Neuro-Oncology. 2010;12(10):1043–9.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Nicolai J, Thevelin L, Bing Q, Stieger B, Chanteux H, Augustijns P, et al. Role of the OATP transporter family and a Benzbromarone-SensitiveEfflux transporter in the hepatocellular disposition of vincristine. Pharm Res. 2017;34(11):2336–48.PubMedGoogle Scholar
  57. 57.
    Wu JQ, Shao K, Wang X, Wang RY, Cao YH, Yu YQ, et al. In vitro and in vivo evidence for amphotericin B as a P-glycoprotein substrate on the blood-brain barrier. Antimicrob Agents Chemother. 2014;58(8):4464–9.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Wurthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ. Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother. 2005;49(12):5092–8.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Hamill RJ, Sobel JD, El-Sadr W, Johnson PC, Graybill JR, Javaly K, et al. Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis. 2010;51(2):225–32.PubMedGoogle Scholar
  60. 60.
    Vogelsinger H, Weiler S, Djanani A, Kountchev J, Bellmann-Weiler R, Wiedermann CJ, et al. Amphotericin B tissue distribution in autopsy material after treatment with liposomal amphotericin B and amphotericin B colloidal dispersion. J Antimicrob Chemother. 2006;57(6):1153–60.PubMedGoogle Scholar
  61. 61.
    Strenger V, Meinitzer A, Donnerer J, Hofer N, Dornbusch HJ, Wanz U, et al. Amphotericin B transfer to CSF following intravenous administration of liposomal amphotericin B. J Antimicrob Chemother. 2014;69(9):2522–6.PubMedGoogle Scholar
  62. 62.
    Hong Y, Shaw PJ, Tattam BN, Nath CE, Earl JW, Stephen KR, et al. Plasma protein distribution and its impact on pharmacokinetics of liposomal amphotericin B in paediatric patients with malignant diseases. Eur J Clin Pharmacol. 2007;63(2):165–72.PubMedGoogle Scholar
  63. 63.
    Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr. 1990;116(5):791–7.PubMedGoogle Scholar
  64. 64.
    Stevens DA, Clemons KV, Martinez M, Chen V. The brain, amphotericin B, and P-glycoprotein. Antimicrob Agents Chemother. 2015;59(2):1386.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Osei-Twum JA, Wasan KM. Does P-glycoprotein contribute to amphotericin B epithelial transport in Caco-2 cells? Drug Dev Ind Pharm. 2015;41(7):1130–6.PubMedGoogle Scholar
  66. 66.
    Sethi PK, White CA, Cummings BS, Hines RN, Muralidhara S, Bruckner JV. Ontogeny of plasma proteins, albumin and binding of diazepam, cyclosporine, and deltamethrin. Pediatr Res. 2016;79(3):409–15.PubMedGoogle Scholar
  67. 67.
    Hargreaves RJ, Rabiner EA. Translational PET imaging research. Neurobiol Dis. 2014;61:32–8.PubMedGoogle Scholar
  68. 68.
    Syvanen S, Eriksson J. Advances in PET imaging of P-glycoprotein function at the blood-brain barrier. ACS Chem Neurosci. 2013;4(2):225–37.PubMedGoogle Scholar
  69. 69.
    Choo EF, Kurnik D, Muszkat M, Ohkubo T, Shay SD, Higginbotham JN, et al. Differential in vivo sensitivity to inhibition of P-glycoprotein located in lymphocytes, testes, and the blood-brain barrier. J Pharmacol Exp Ther. 2006;317(3):1012–8.PubMedGoogle Scholar
  70. 70.
    Kurnik D, Sofowora GG, Donahue JP, Nair UB, Wilkinson GR, Wood AJ, et al. Tariquidar, a selective P-glycoprotein inhibitor, does not potentiate loperamide's opioid brain effects in humans despite full inhibition of lymphocyte P-glycoprotein. Anesthesiology. 2008;109(6):1092–9.PubMedGoogle Scholar
  71. 71.
    Wagner CC, Bauer M, Karch R, Feurstein T, Kopp S, Chiba P, et al. A pilot study to assess the efficacy of tariquidar to inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil and PET. J Nucl Med. 2009;50(12):1954–61.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Bousquet L, Roucairol C, Hembury A, Nevers MC, Creminon C, Farinotti R, et al. Comparison of ABC transporter modulation by atazanavir in lymphocytes and human brain endothelial cells: ABC transporters are involved in the atazanavir-limited passage across an in vitro human model of the blood-brain barrier. AIDS Res Hum Retrovir. 2008;24(9):1147–54.PubMedGoogle Scholar
  73. 73.
    Machado CG, Calado RT, Garcia AB, Falcao RP. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes. Braz J Med Biol Res. 2003;36(12):1653–7.PubMedGoogle Scholar
  74. 74.
    Giraud C, Decleves X, Perrot JY, Manceau S, Pannier E, Firtion G, et al. High levels of P-glycoprotein activity in human lymphocytes in the first 6 months of life. Clin Pharmacol Ther. 2009;85(3):289–95.PubMedGoogle Scholar
  75. 75.
    Prasad B, Gaedigk A, Vrana M, Gaedigk R, Leeder JS, Salphati L, et al. Ontogeny of hepatic drug transporters as quantified by LC-MS/MS proteomics. Clin Pharmacol Ther. 2016;100(4):362–70.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Johnson TN, Thomson M. Intestinal metabolism and transport of drugs in children: the effects of age and disease. J Pediatr Gastroenterol Nutr. 2008;47(1):3–10.PubMedGoogle Scholar
  77. 77.
    Fakhoury M, Litalien C, Medard Y, Cave H, Ezzahir N, Peuchmaur M, et al. Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metab Dispos. 2005;33(11):1603–7.PubMedGoogle Scholar
  78. 78.
    Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta. 2006;27(6–7):602–9.PubMedGoogle Scholar
  79. 79.
    Vandenbossche J, Huisman M, Xu Y, Sanderson-Bongiovanni D, Soons P. Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance. J Pharm Pharmacol. 2010;62(4):401–12.PubMedGoogle Scholar
  80. 80.
    Chanzy S, Moretti S, Mayet H, Routon MC, De Gennes C, Mselati JC. Loss of consciousness in a child due to loperamide. Arch Pediatr. 2004;11(7):826–7.PubMedGoogle Scholar
  81. 81.
    Motala C, Hill ID, Mann MD, Bowie MD. Effect of loperamide on stool output and duration of acute infectious diarrhea in infants. J Pediatr. 1990;117(3):467–71.PubMedGoogle Scholar
  82. 82.
    Minton NA, Smith PG. Loperamide toxicity in a child after a single dose. Br Med J (Clin Res Ed). 1987;294(6584):1383.Google Scholar
  83. 83.
    Megarbane B, Alhaddad H. P-glycoprotein should be considered as an additional factor contributing to opioid-induced respiratory depression in paediatrics: the buprenorphine example. Br J Anaesth. 2013;110(5):842.PubMedGoogle Scholar
  84. 84.
    Kraft WK. Buprenorphine in neonatal abstinence syndrome. Clin Pharmacol Ther. 2018;103(1):112–9.PubMedGoogle Scholar
  85. 85.
    Liao MZ, Gao C, Shireman LM, Phillips B, Risler LJ, Neradugomma NK, et al. P-gp/ABCB1 exerts differential impacts on brain and fetal exposure to norbuprenorphine. Pharmacol Res. 2017;119:61–71.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Kim HK, Smiddy M, Hoffman RS, Nelson LS. Buprenorphine may not be as safe as you think: a pediatric fatality from unintentional exposure. Pediatrics. 2012;130(6):e1700–3.PubMedGoogle Scholar
  87. 87.
    Toce MS, Burns MM, O'Donnell KA. Clinical effects of unintentional pediatric buprenorphine exposures: experience at a single tertiary care center. Clin Toxicol (Phila). 2017;55(1):12–7.Google Scholar
  88. 88.
    Hayes BD, Klein-Schwartz W, Doyon S. Toxicity of buprenorphine overdoses in children. Pediatrics. 2008;121(4):e782–6.PubMedGoogle Scholar
  89. 89.
    Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin a. J Clin Invest. 1995;96(4):1698–705.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Brophy GM, Mazzeo AT, Brar S, Alves OL, Bunnell K, Gilman C, et al. Exposure of cyclosporin a in whole blood, cerebral spinal fluid, and brain extracellular fluid dialysate in adults with traumatic brain injury. J Neurotrauma. 2013;30(17):1484–9.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Taque S, Peudenier S, Gie S, Rambeau M, Gandemer V, Bridoux L, et al. Central neurotoxicity of cyclosporine in two children with nephrotic syndrome. Pediatr Nephrol. 2004;19(3):276–80.PubMedGoogle Scholar
  92. 92.
    Menache CC, du Plessis AJ, Wessel DL, Jonas RA, Newburger JW. Current incidence of acute neurologic complications after open-heart operations in children. Ann Thorac Surg. 2002;73(6):1752–8.PubMedGoogle Scholar
  93. 93.
    Wijdicks EF. Neurotoxicity of immunosuppressive drugs. Liver Transpl. 2001;7(11):937–42.PubMedGoogle Scholar
  94. 94.
    Yanagimachi M, Naruto T, Tanoshima R, Kato H, Yokosuka T, Kajiwara R, et al. Influence of CYP3A5 and ABCB1 gene polymorphisms on calcineurin inhibitor-related neurotoxicity after hematopoietic stem cell transplantation. Clin Transpl. 2010;24(6):855–61.Google Scholar
  95. 95.
    Reddy GK, Brown B, Nanda A. Fatal consequences of a simple mistake: how can a patient be saved from inadvertent intrathecal vincristine? Clin Neurol Neurosurg. 2011;113(1):68–71.PubMedGoogle Scholar
  96. 96.
    Jackson DV Jr, Sethi VS, Spurr CL, McWhorter JM. Pharmacokinetics of vincristine in the cerebrospinal fluid of humans. Cancer Res. 1981;41(4):1466–8.PubMedGoogle Scholar
  97. 97.
    Tomiwa K, Hazama F, Mikawa H. Neurotoxicity of vincristine after the osmotic opening of the blood-brain barrier. Neuropathol Appl Neurobiol. 1983;9(5):345–54.PubMedGoogle Scholar
  98. 98.
    Krugman L, Bryan JN, Mealey KL, Chen A. Vincristine-induced central neurotoxicity in a collie homozygous for the ABCB1Delta mutation. J Small Anim Pract. 2012;53(3):185–7.PubMedGoogle Scholar
  99. 99.
    Eiden C, Palenzuela G, Hillaire-Buys D, Margueritte G, Cociglio M, Hansel-Esteller S, et al. Posaconazole-increased vincristine neurotoxicity in a child: a case report. J Pediatr Hematol Oncol. 2009;31(4):292–5.PubMedGoogle Scholar
  100. 100.
    Rothmond DA, Weickert CS, Webster MJ. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators. BMC Neurosci. 2012;13:18.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Chugani DC, Muzik O, Juhasz C, Janisse JJ, Ager J, Chugani HT. Postnatal maturation of human GABAA receptors measured with positron emission tomography. Ann Neurol. 2001;49(5):618–26.PubMedGoogle Scholar
  102. 102.
    Chugani HT, Kumar A, Muzik O. GABA(a) receptor imaging with positron emission tomography in the human newborn: a unique binding pattern. Pediatr Neurol. 2013;48(6):459–62.PubMedGoogle Scholar
  103. 103.
    Talos DM, Chang M, Kosaras B, Fitzgerald E, Murphy A, Folkerth RD, et al. Antiepileptic effects of levetiracetam in a rodent neonatal seizure model. Pediatr Res. 2013;73(1):24–30.PubMedGoogle Scholar
  104. 104.
    Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD. Recent developments in understanding barrier mechanisms in the developing brain: drugs and drug transporters in pregnancy, susceptibility or protection in the fetal brain? Annu Rev Pharmacol Toxicol. 2019;59:487–505.PubMedGoogle Scholar
  105. 105.
    Ek CJ, Dziegielewska KM, Habgood MD, Saunders NR. Barriers in the developing brain and Neurotoxicology. Neurotoxicology. 2012;33(3):586–604.PubMedGoogle Scholar
  106. 106.
    Hoffmann P, Beckman D, McLean LA, Yan JH. Aliskiren toxicity in juvenile rats is determined by ontogenic regulation of intestinal P-glycoprotein expression. Toxicol Appl Pharmacol. 2014;275(1):36–43.PubMedGoogle Scholar
  107. 107.
    Ek CJ, Wong A, Liddelow SA, Johansson PA, Dziegielewska KM, Saunders NR. Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. Toxicol Lett. 2010;197(1):51–9.PubMedGoogle Scholar
  108. 108.
    Matsuoka Y, Okazaki M, Kitamura Y, Taniguchi T. Developmental expression of P-glycoprotein (multidrug resistance gene product) in the rat brain. J Neurobiol. 1999;39(3):383–92.PubMedGoogle Scholar
  109. 109.
    Morimoto K, Nagami T, Matsumoto N, Wada S, Kano T, Kakinuma C, et al. Developmental changes of brain distribution and localization of oseltamivir and its active metabolite Ro 64-0802 in rats. J Toxicol Sci. 2012;37(6):1217–23.PubMedGoogle Scholar
  110. 110.
    Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, et al. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol. 2008;510(5):497–507.PubMedGoogle Scholar
  111. 111.
    Goralski KB, Acott PD, Fraser AD, Worth D, Sinal CJ. Brain cyclosporin a levels are determined by ontogenic regulation of mdr1a expression. Drug Metab Dispos. 2006;34(2):288–95.PubMedGoogle Scholar
  112. 112.
    Tsai CE, Daood MJ, Lane RH, Hansen TW, Gruetzmacher EM, Watchko JF. P-glycoprotein expression in mouse brain increases with maturation. Biol Neonate. 2002;81(1):58–64.PubMedGoogle Scholar
  113. 113.
    Buelke-Sam J, editor. Comparative schedules of development in rats and humans: Implications for developmental neurotoxicity testing. Abstract 820 presented at the Society of Toxicology Annual Meeting, Salt Lake City, UT, USA, 9–13 March, 2003.Google Scholar
  114. 114.
    Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes and current tools for predictions. Biopharm Drug Dispos. 2016.Google Scholar
  115. 115.
    Johnson TN, Tanner MS, Taylor CJ, Tucker GT. Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol. 2001;51(5):451–60.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Stenling R, Fredrikzon B, Nyhlin H, Helander HF, Falkmer S. Surface ultrastructure of the small intestine mucosa in healthy children and adults: a scanning electron microscopic study with some methodological aspects. Ultrastruct Pathol. 1984;6(2–3):131–40.PubMedGoogle Scholar
  117. 117.
    Cornes JS. Number, size, and distribution of Peyer's patches in the human small intestine: part II the effect of age on Peyer's patches. Gut. 1965;6(3):230–3.Google Scholar
  118. 118.
    Syvanen S, Lindhe O, Palner M, Kornum BR, Rahman O, Langstrom B, et al. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos. 2009;37(3):635–43.PubMedGoogle Scholar
  119. 119.
    Uchida Y, Wakayama K, Ohtsuki S, Chiba M, Ohe T, Ishii Y, et al. Blood-brain barrier pharmacoproteomics-based reconstruction of the in vivo brain distribution of P-glycoprotein substrates in cynomolgus monkeys. J Pharmacol Exp Ther. 2014;350(3):578–88.PubMedGoogle Scholar
  120. 120.
    Hoshi Y, Uchida Y, Tachikawa M, Inoue T, Ohtsuki S, Terasaki T. Quantitative atlas of blood-brain barrier transporters, receptors, and tight junction proteins in rats and common marmoset. J Pharm Sci. 2013;102(9):3343–55.PubMedGoogle Scholar
  121. 121.
    Maharaj AR, Edginton AN. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst Pharmacol. 2014;3(11):1–13.Google Scholar
  122. 122.
    Leong R, Vieira ML, Zhao P, Mulugeta Y, Lee CS, Huang SM, et al. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin Pharmacol Ther. 2012;91(5):926–31.PubMedGoogle Scholar
  123. 123.
    Rioux N, Waters NJ. Physiologically based pharmacokinetic modeling in pediatric oncology drug development. Drug Metab Dispos. 2016;44(7):934–43.PubMedGoogle Scholar
  124. 124.
    Maharaj AR, Barrett JS, Edginton AN. A workflow example of PBPK modeling to support pediatric research and development: case study with lorazepam. AAPS J. 2013;15(2):455–64.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–56.PubMedGoogle Scholar
  126. 126.
    Zhou W, Johnson TN, Xu H, Cheung S, Bui KH, Li J, et al. Predictive performance of physiologically based pharmacokinetic and population pharmacokinetic modeling of Renally cleared drugs in children. CPT Pharmacometrics Syst Pharmacol. 2016;5(9):475–83.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Edginton AN, Schmitt W, Willmann S. Development and evaluation of a generic physiologically based pharmacokinetic model for children. Clin Pharmacokinet. 2006;45(10):1013–34.PubMedGoogle Scholar
  128. 128.
    Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Ogungbenro K, Aarons L, Cresim ECPG. A physiologically based pharmacokinetic model for Valproic acid in adults and children. Eur J Pharm Sci. 2014;63:45–52.PubMedGoogle Scholar
  130. 130.
    Hornik CP, Wu H, Edginton AN, Watt K, Cohen-Wolkowiez M, Gonzalez D. Development of a pediatric physiologically-based pharmacokinetic model of clindamycin using opportunistic pharmacokinetic data. Clin Pharmacokinet. 2017;56(11):1343–53.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Willmann S, Becker C, Burghaus R, Coboeken K, Edginton A, Lippert J, et al. Development of a paediatric population-based model of the pharmacokinetics of rivaroxaban. Clin Pharmacokinet. 2014;53(1):89–102.PubMedGoogle Scholar
  132. 132.
    Thai HT, Mazuir F, Cartot-Cotton S, Veyrat-Follet C. Optimizing pharmacokinetic bridging studies in paediatric oncology using physiologically-based pharmacokinetic modelling: application to docetaxel. Br J Clin Pharmacol. 2015;80(3):534–47.PubMedPubMedCentralGoogle Scholar
  133. 133.
    Abdel-Rahman SM, Amidon GL, Kaul A, Lukacova V, Vinks AA, Knipp GT, et al. Summary of the National Institute of Child Health and Human Development-best pharmaceuticals for children act pediatric formulation initiatives workshop-pediatric biopharmaceutics classification system working group. Clin Ther. 2012;34(11):S11–24.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Fenneteau F, Li J, Nekka F. Assessing drug distribution in tissues expressing P-glycoprotein using physiologically based pharmacokinetic modeling: identification of important model parameters through global sensitivity analysis. J Pharmacokinet Pharmacodyn. 2009;36(6):495–522.PubMedGoogle Scholar
  135. 135.
    Fenneteau F, Turgeon J, Couture L, Michaud V, Li J, Nekka F. Assessing drug distribution in tissues expressing P-glycoprotein through physiologically based pharmacokinetic modeling: model structure and parameters determination. Theor Biol Med Model. 2009;6:2. Scholar
  136. 136.
    Ball K, Bouzom F, Scherrmann JM, Walther B, Decleves X. Physiologically based pharmacokinetic modelling of drug penetration across the blood-brain barrier--towards a mechanistic IVIVE-based approach. AAPS J. 2013;15(4):913–32.PubMedPubMedCentralGoogle Scholar
  137. 137.
    Sjostedt N, Kortejarvi H, Kidron H, Vellonen KS, Urtti A, Yliperttula M. Challenges of using in vitro data for modeling P-glycoprotein efflux in the blood-brain barrier. Pharm Res. 2014;31(1):1–19.PubMedGoogle Scholar
  138. 138.
    Yamamoto Y, Valitalo PA, Huntjens DR, Proost JH, Vermeulen A, Krauwinkel W, et al. Predicting drug concentration-time profiles in multiple CNS compartments using a comprehensive physiologically-based pharmacokinetic model. CPT Pharmacometrics Syst Pharmacol. 2017.Google Scholar
  139. 139.
    Yamamoto Y, Valitalo PA, Wong YC, Huntjens DR, Proost JH, Vermeulen A, et al. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach. Eur J Pharm Sci. 2017;112:168–79.PubMedGoogle Scholar
  140. 140.
    Ketharanathan N, Yamamoto Y, Rohlwink UK, Wildschut ED, Mathot RAA, de Lange ECM, et al. Combining brain microdialysis and translational pharmacokinetic modeling to predict drug concentrations in pediatric severe traumatic brain injury: the next step toward evidence-based pharmacotherapy? J Neurotrauma. 2019;36(1):111–7.PubMedGoogle Scholar
  141. 141.
    Baello S, Iqbal M, Gibb W, Matthews SG. Astrocyte-mediated regulation of multidrug resistance p-glycoprotein in fetal and neonatal brain endothelial cells: age-dependent effects. Physiol Rep. 2016;4(16):e12853.PubMedPubMedCentralGoogle Scholar
  142. 142.
    Alvarez JI, Katayama T, Prat A. Glial influence on the blood brain barrier. Glia. 2013;61(12):1939–58.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Baello S, Iqbal M, Bloise E, Javam M, Gibb W, Matthews SG. TGF-beta1 regulation of multidrug resistance P-glycoprotein in the developing male blood-brain barrier. Endocrinology. 2014;155(2):475–84.PubMedGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  1. 1.Quantitative Pharmacology DMPK DepartmentUCB BioPharmaBraine L’AlleudBelgium
  2. 2.Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug ResearchLeiden UniversityLeidenThe Netherlands

Personalised recommendations