The AAPS Journal

, 21:72 | Cite as

Translational Quantitative Systems Pharmacology in Drug Development: from Current Landscape to Good Practices

  • Jane P. F. BaiEmail author
  • Justin C. Earp
  • Venkateswaran C. Pillai
Review Article


Systems pharmacology approaches have the capability of quantitatively linking the key biological molecules relevant to a drug candidate’s mechanism of action (drug-induced signaling pathways) to the clinical biomarkers associated with the proposed target disease, thereby quantitatively facilitating its development and life cycle management. In this review, the model attributes of published quantitative systems pharmacology (QSP) modeling for lowering cholesterol, treating salt-sensitive hypertension, and treating rare diseases as well as describing bone homeostasis and related pharmacological effects are critically reviewed with respect to model quality, calibration, validation, and performance. We further reviewed the common practices in optimizing QSP modeling and prediction. Notably, leveraging genetics and genomic studies for model calibration and validation is common. Statistical and quantitative assessment of QSP prediction and handling of model uncertainty are, however, mostly lacking as are the quantitative and statistical criteria for assessing QSP predictions and the covariance matrix of coefficients between the parameters in a validated virtual population. To accelerate advances and application of QSP with consistent quality, a list of key questions is proposed to be addressed when assessing the quality of a QSP model in hopes of stimulating the scientific community to set common expectations. The common expectations as to what constitutes the best QSP modeling practices, which the scientific community supports, will advance QSP modeling in the realm of informed drug development. In the long run, good practices will extend the life cycles of QSP models beyond the life cycles of individual drugs.


best practices biomarkers life cycle of QSP models model assessment virtual patients 



The authors would like to thank Dr. Robert Schuck (pharmacologist, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration) for his comments on leveraging genetics to calibrate the model.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


This article reflects the views of the authors and should not be construed to represent the views or policies of the US Food and Drug Administration.


  1. 1.
    Nyman E, Brannmark C, Palmer R, Brugard J, Nystrom FH, Stralfors P, et al. A hierarchical whole-body modeling approach elucidates the link between in vitro insulin signaling and in vivo glucose homeostasis. J Biol Chem. 2011;286(29):26028–41.CrossRefGoogle Scholar
  2. 2.
    Hardy T, Abu-Raddad E, Porksen N, De Gaetano A. Evaluation of a mathematical model of diabetes progression against observations in the Diabetes Prevention Program. Am J Physiol Endocrinol Metab. 2012;303(2):E200–12.CrossRefGoogle Scholar
  3. 3.
    Liu J, Ogden A, Comery TA, Spiros A, Roberts P, Geerts H. Prediction of efficacy of vabicaserin, a 5-HT2C agonist, for the treatment of schizophrenia using a quantitative systems pharmacology model. CPT Pharmacometrics Syst Pharmacol. 2014;3:e111.CrossRefGoogle Scholar
  4. 4.
    Messinis DE, Melas IN, Hur J, Varshney N, Alexopoulos LG, Bai JPF. Translational systems pharmacology-based predictive assessment of drug-induced cardiomyopathy. CPT Pharmacometrics Syst Pharmacol. 2018;7(3):166–74.CrossRefGoogle Scholar
  5. 5.
    Nijsen M, Wu F, Bansal L, Bradshaw-Pierce E, Chan JR, Liederer BM, et al. Preclinical QSP modeling in the pharmaceutical industry: an IQ consortium survey examining the current landscape. CPT Pharmacometrics Syst Pharmacol. 2018;7(3):135–46.CrossRefGoogle Scholar
  6. 6.
    Cheng Y, Thalhauser CJ, Smithline S, Pagidala J, Miladinov M, Vezina HE, et al. QSP toolbox: computational implementation of integrated workflow components for deploying multi-scale mechanistic models. AAPS J. 2017;19(4):1002–16.CrossRefGoogle Scholar
  7. 7.
    Lu J, Cleary Y, Maugeais C, Kiu Weber CI, Mazer NA. Analysis of “on/off” kinetics of a CETP inhibitor using a mechanistic model of lipoprotein metabolism and kinetics. CPT Pharmacometrics Syst Pharmacol. 2015;4(8):465–73.CrossRefGoogle Scholar
  8. 8.
    van der Graaf PH, Benson N. The role of quantitative systems pharmacology in the design of first-in-human trials. Clin Pharmacol Ther. 2018;104(5):797.CrossRefGoogle Scholar
  9. 9.
    Workgroup EM, Marshall SF, Burghaus R, Cosson V, Cheung SY, Chenel M, et al. Good practices in model-informed drug discovery and development: practice, application, and documentation. CPT Pharmacometrics Syst Pharmacol. 2016;5(3):93–122.CrossRefGoogle Scholar
  10. 10.
    Lu J, Hubner K, Nanjee MN, Brinton EA, Mazer NA. An in-silico model of lipoprotein metabolism and kinetics for the evaluation of targets and biomarkers in the reverse cholesterol transport pathway. PLoS Comput Biol. 2014;10(3):e1003509.CrossRefGoogle Scholar
  11. 11.
    Gadkar K, Lu J, Sahasranaman S, Davis J, Mazer NA, Ramanujan S. Evaluation of HDL-modulating interventions for cardiovascular risk reduction using a systems pharmacology approach. J Lipid Res. 2016;57(1):46–55.CrossRefGoogle Scholar
  12. 12.
    Gadkar K, Budha N, Baruch A, Davis JD, Fielder P, Mechanistic RSA. Systems pharmacology model for prediction of LDL cholesterol lowering by PCSK9 antagonism in human dyslipidemic populations. CPT Pharmacometrics Syst Pharmacol. 2014;3:e149.CrossRefGoogle Scholar
  13. 13.
    Ming JE, Abrams RE, Bartlett DW, Tao M, Nguyen T, Surks H, et al. A quantitative systems pharmacology platform to investigate the impact of alirocumab and cholesterol-lowering therapies on lipid profiles and plaque characteristics. Gene Regul Syst Bio. 2017;11:1177625017710941.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Oram JF, Lawn RM. ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res. 2001;42(8):1173–9.PubMedGoogle Scholar
  15. 15.
    Tall A. Plasma lipid transfer proteins. Annu Rev Biochem. 1995;64:235–57.CrossRefGoogle Scholar
  16. 16.
    Grefhorst A, McNutt MC, Lagace TA, Horton JD. Plasma PCSK9 preferentially reduces liver LDL receptors in mice. J Lipid Res. 2008;49(6):1303–11.CrossRefGoogle Scholar
  17. 17.
    Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.CrossRefGoogle Scholar
  18. 18.
    Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–23.CrossRefGoogle Scholar
  19. 19.
    Welder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res. 2010;51(9):2714–21.CrossRefGoogle Scholar
  20. 20.
    Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49(2):394–8.CrossRefGoogle Scholar
  21. 21.
    Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J Biol Chem. 2004;279(48):50630–8.CrossRefGoogle Scholar
  22. 22.
    Attie AD, Seidah NG. Dual regulation of the LDL receptor--some clarity and new questions. Cell Metab. 2005;1(5):290–2.CrossRefGoogle Scholar
  23. 23.
    Hallow KM, Gebremichael Y. A quantitative systems physiology model of renal function and blood pressure regulation: model description. CPT Pharmacometrics Syst Pharmacol. 2017;6(6):383–92.CrossRefGoogle Scholar
  24. 24.
    Hallow KM, Gebremichael Y. A quantitative systems physiology model of renal function and blood pressure regulation: application in salt-sensitive hypertension. CPT Pharmacometrics Syst Pharmacol. 2017;6(6):393–400.CrossRefGoogle Scholar
  25. 25.
    Karaaslan F, Denizhan Y, Kayserilioglu A, Gulcur HO. Long-term mathematical model involving renal sympathetic nerve activity, arterial pressure, and sodium excretion. Ann Biomed Eng. 2005;33(11):1607–30.CrossRefGoogle Scholar
  26. 26.
    Hallow KM, Lo A, Beh J, Rodrigo M, Ermakov S, Friedman S, et al. A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: extending the Guyton model. Am J Physiol Regul Integr Comp Physiol. 2014;306(9):R647–62.CrossRefGoogle Scholar
  27. 27.
    Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ. Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol. 2004;229(3):293–309.CrossRefGoogle Scholar
  28. 28.
    Peterson MC, Riggs MM. A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone. 2010;46(1):49–63.CrossRefGoogle Scholar
  29. 29.
    Peterson MC, Riggs MM. Predicting nonlinear changes in bone mineral density over time using a multiscale systems pharmacology model. CPT Pharmacometrics Syst Pharmacol. 2012;1:e14.CrossRefGoogle Scholar
  30. 30.
    Post TM, Schmidt S, Peletier LA, de Greef R, Kerbusch T, Danhof M. Application of a mechanism-based disease systems model for osteoporosis to clinical data. J Pharmacokinet Pharmacodyn. 2013;40(2):143–56.CrossRefGoogle Scholar
  31. 31.
    Schmidt S, Post TM, Peletier LA, Boroujerdi MA, Danhof M. Coping with time scales in disease systems analysis: application to bone remodeling. J Pharmacokinet Pharmacodyn. 2011;38(6):873–900.CrossRefGoogle Scholar
  32. 32.
    Berkhout J, Stone JA, Verhamme KM, Stricker BH, Sturkenboom MC, Danhof M, et al. Application of a systems pharmacology-based placebo population model to analyze long-term data of postmenopausal osteoporosis. CPT Pharmacometrics Syst Pharmacol. 2015;4(9):516–26.CrossRefGoogle Scholar
  33. 33.
    Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, et al. Model structure and control of bone remodeling: a theoretical study. Bone. 2008;43(2):249–63.CrossRefGoogle Scholar
  34. 34.
    Buenzli PR, Pivonka P, Gardiner BS, Smith DW. Modelling the anabolic response of bone using a cell population model. J Theor Biol. 2012;307:42–52.CrossRefGoogle Scholar
  35. 35.
    Marathe DD, Marathe A, Mager DE. Integrated model for denosumab and ibandronate pharmacodynamics in postmenopausal women. Biopharm Drug Dispos. 2011;32(8):471–81.CrossRefGoogle Scholar
  36. 36.
    Earp JC, Dubois DC, Molano DS, Pyszczynski NA, Keller CE, Almon RR, et al. Modeling corticosteroid effects in a rat model of rheumatoid arthritis I: mechanistic disease progression model for the time course of collagen-induced arthritis in Lewis rats. J Pharmacol Exp Ther. 2008;326(2):532–45.CrossRefGoogle Scholar
  37. 37.
    Lon HK, DuBois DC, Earp JC, Almon RR, Jusko WJ. Modeling effects of dexamethasone on disease progression of bone mineral density in collagen-induced arthritic rats. Pharmacol Res Perspect. 2015;3(5):e00169.CrossRefGoogle Scholar
  38. 38.
    Earp JC, Dubois DC, Molano DS, Pyszczynski NA, Almon RR, Jusko WJ. Modeling corticosteroid effects in a rat model of rheumatoid arthritis II: mechanistic pharmacodynamic model for dexamethasone effects in Lewis rats with collagen-induced arthritis. J Pharmacol Exp Ther. 2008;326(2):546–54.CrossRefGoogle Scholar
  39. 39.
    Lon HK, Liu D, Zhang Q, DuBois DC, Almon RR, Jusko WJ. Pharmacokinetic-pharmacodynamic disease progression model for effect of etanercept in Lewis rats with collagen-induced arthritis. Pharm Res. 2011;28(7):1622–30.CrossRefGoogle Scholar
  40. 40.
    Ramakrishnan R, DuBois DC, Almon RR, Pyszczynski NA, Jusko WJ. Fifth-generation model for corticosteroid pharmacodynamics: application to steady-state receptor down-regulation and enzyme induction patterns during seven-day continuous infusion of methylprednisolone in rats. J Pharmacokinet Pharmacodyn. 2002;29(1):1–24.CrossRefGoogle Scholar
  41. 41.
    Raposo JF, Sobrinho LG, Ferreira HG. A minimal mathematical model of calcium homeostasis. J Clin Endocrinol Metab. 2002;87(9):4330–40.CrossRefGoogle Scholar
  42. 42.
    Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem. 2003;278(50):50259–72.CrossRefGoogle Scholar
  43. 43.
    Allen RJ, Musante CJ. A mathematical analysis of adaptations to the metabolic fate of fructose in essential fructosuria subjects. Am J Physiol Endocrinol Metab. 2018;315(3):E394–403.CrossRefGoogle Scholar
  44. 44.
    Kaddi CD, Niesner B, Baek R, Jasper P, Pappas J, Tolsma J, et al. Quantitative systems pharmacology modeling of acid sphingomyelinase deficiency and the enzyme replacement therapy olipudase alfa is an innovative tool for linking pathophysiology and pharmacology. CPT Pharmacometrics Syst Pharmacol. 2018;7(7):442–52.CrossRefGoogle Scholar
  45. 45.
    Zhang XY, Trame MN, Lesko LJ, Schmidt S. Sobol sensitivity analysis: a tool to guide the development and evaluation of systems pharmacology models. CPT Pharmacometrics Syst Pharmacol. 2015;4(2):69–79.CrossRefGoogle Scholar
  46. 46.
    Anna A, Sher KW, Wathen A, Maybank PJ, Mirams GR, David Abramson DN, et al. A local sensitivity analysis method for developing biological models with identifiable parameters: application to cardiac ionic channel modelling. Futur Gener Comput Syst. 2013;29:591–8.CrossRefGoogle Scholar
  47. 47.
    Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol. 2007;3(10):1871–8.CrossRefGoogle Scholar
  48. 48.
    Zhang XY, Birtwistle MR, Gallo JM. A general network pharmacodynamic model-based design pipeline for customized cancer therapy applied to the VEGFR pathway. CPT Pharmacometrics Syst Pharmacol. 2014;3:e92.CrossRefGoogle Scholar
  49. 49.
    Lu Y, Griffen SC, Boulton DW, Leil TA. Use of systems pharmacology modeling to elucidate the operating characteristics of SGLT1 and SGLT2 in renal glucose reabsorption in humans. Front Pharmacol. 2014;5:274.CrossRefGoogle Scholar
  50. 50.
    Allen RJ, Rieger TR, Musante CJ. Efficient generation and selection of virtual populations in quantitative systems pharmacology models. CPT Pharmacometrics Syst Pharmacol. 2016;5(3):140–6.CrossRefGoogle Scholar
  51. 51.
    Rieger TR, Allen RJ, Bystricky L, Chen Y, Colopy GW, Cui Y, et al. Improving the generation and selection of virtual populations in quantitative systems pharmacology models. Prog Biophys Mol Biol. 2018;139:15–22.CrossRefGoogle Scholar
  52. 52.
    Schmidt BJ, Casey FP, Paterson T, Chan JR. Alternate virtual populations elucidate the type I interferon signature predictive of the response to rituximab in rheumatoid arthritis. BMC Bioinformatics. 2013;14:221.CrossRefGoogle Scholar
  53. 53.
    Kirouac DC, Cicali B, Schmidt S. Reproducibility of quantitative systems pharmacology models: current challenges and future opportunities. CPT Pharmacometrics Syst Pharmacol. 2019;8(4):205–10.CrossRefGoogle Scholar
  54. 54.
    Cucurull-Sanchez L, Chappell MJ, Chelliah V, Amy Cheung SY, Derks G, Penney M, et al. Best practices to maximise the use and re-use of QSP models recommendations from the UK QSP network. CPT Pharmacometrics Syst Pharmacol. 2019;8(5):259-272. Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Jane P. F. Bai
    • 1
    Email author
  • Justin C. Earp
    • 1
  • Venkateswaran C. Pillai
    • 1
  1. 1.Office of Clinical PharmacologyCenter for Drug Evaluation and Research, U.S. Food and Drug AdministrationSilver SpringUSA

Personalised recommendations