Advertisement

The AAPS Journal

, 21:64 | Cite as

Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy

  • Quoc-Viet Le
  • Juhan Suh
  • Yu-Kyoung OhEmail author
Review Article

Abstract

The tumor microenvironment (TME) has drawn considerable research attention as an alternative target for nanomedicine-based cancer therapy. Various nanomaterials that carry active substances have been designed to alter the features or composition of the TME and thereby improve the delivery and efficacy of anticancer chemotherapeutics. These alterations include disruption of the extracellular matrix and tumor vascular systems to promote perfusion or modulate hypoxia. Nanomaterials have also been used to modulate the immunological microenvironment of tumors. In this context, nanomaterials have been shown to alter populations of cancer-associated fibroblasts, tumor-associated macrophages, regulatory T cells, and myeloid-derived suppressor cells. Despite considerable progress, nanomaterial-based TME modulation must overcome several limitations before this strategy can be translated to clinical trials, including issues related to limited tumor tissue penetration, tumor heterogeneity, and immune toxicity. In this review, we summarize recent progress and challenges of nanomaterials used to modulate the TME to enhance the efficacy of anticancer chemotherapy and immunotherapy.

KEY WORDS

chemotherapy immunotherapy modulation of microenvironment nanomaterials tumor microenvironment 

Notes

Funding Information

This research was supported by grants from the Ministry of Science and ICT, Republic of Korea (NRF-2018R1A2A1A05019203; NRF-2018R1A5A2024425), and the Korean Health Technology R&D Project (Nos. HI15C2842; HI18C2177), Ministry of Health & Welfare, Republic of Korea.

References

  1. 1.
    Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016;380(1):205–15.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125(23):5591–6.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. Cell Death Dis. 2016;7(6):e2253.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7(1):1–10.CrossRefGoogle Scholar
  5. 5.
    Menard JA, Christianson HC, Kucharzewska P, Bourseau-Guilmain E, Svensson KJ, Lindqvist E, et al. Metastasis stimulation by hypoxia and acidosis-induced extracellular lipid uptake is mediated by proteoglycan-dependent endocytosis. Cancer Res. 2016;76(16):4828–40.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Casey SC, Amedei A, Aquilano K, Azmi AS, Benencia F, Bhakta D, et al. Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin Cancer Biol. 2015;35:S199–223.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18:99–115.CrossRefGoogle Scholar
  8. 8.
    Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24(5):541–50.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Takeuchi Y, Nishikawa H. Roles of regulatory T cells in cancer immunity. Int Immunol. 2016;28(8):401–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fujimura T, Kambayashi Y, Aiba S. Crosstalk between regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSCs) during melanoma growth. Oncoimmunology. 2012;1(8):1433–4.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wesolowski R, Markowitz J, Carson WE. Myeloid derived suppressor cells - a new therapeutic target in the treatment of cancer. J Immunother Cancer. 2013;1:10. References [11] and [107] based on original manuscript we received were identical. Hence, the latter was deleted and reference list and citations were adjusted. Please check if appropriate.see emailGoogle Scholar
  12. 12.
    Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27(4):451–61.CrossRefGoogle Scholar
  13. 13.
    Maeda H, Tsukigawa K, Fang J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: next-generation chemotherapeutics and photodynamic therapy—problems, solutions, and prospects. Microcirculation. 2016;23(3):173–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225–38.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Weniger M, Honselmann KC, Liss AS. The extracellular matrix and pancreatic cancer: a complex relationship. Cancers (Basel). 2018;10(9):316.CrossRefGoogle Scholar
  16. 16.
    Jang M, Koh I, Lee JE, Lim JY, Cheong JH, Kim P. Increased extracellular matrix density disrupts E-cadherin/β-catenin complex in gastric cancer cells. Biomater Sci. 2018;6(10):2704–13.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395–406.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dufort CC, DelGiorno KE, Carlson MA, Osgood RJ, Zhao C, Huang Z, et al. Interstitial pressure in pancreatic ductal adenocarcinoma is dominated by a gel-fluid phase. Biophys J. 2016;110(9):2106–19.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lu J, Liu X, Liao YP, Salazar F, Sun B, Jiang W, et al. Nano-enabled pancreas cancer immunotherapy using immunogenic cell death and reversing immunosuppression. Nat Commun. 2017;8:1811.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gong H, Chao Y, Xiang J, Han X, Song G, Feng L, et al. Hyaluronidase to enhance nanoparticle-based photodynamic tumor therapy. Nano Lett. 2016;16(4):2512–21.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Zhou H, Fan Z, Deng J, Lemons PK, Arhontoulis DC, Bowne WB, et al. Hyaluronidase embedded in Nanocarrier PEG Shell for enhanced tumor penetration and highly efficient antitumor efficacy. Nano Lett. 2016;16(5):3268–77.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Jiang T, Zhang B, Shen S, Tuo Y, Luo Z, Hu Y, et al. Tumor microenvironment modulation by cyclopamine improved photothermal therapy of biomimetic gold nanorods for pancreatic ductal adenocarcinomas. ACS Appl Mater Interfaces. 2017;9(37):31497–508.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Zhang D, Feng F, Li Q, Wang X, Yao L. Nanopurpurin-based photodynamic therapy destructs extracellular matrix against intractable tumor metastasis. Biomaterials. 2018;173:22–33.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lv S, Tang Z, Song W, Zhang D, Li M, Liu H, et al. Inhibiting solid tumor growth in vivo by non-tumor-penetrating nanomedicine. Small. 2017;13(12):1600954.CrossRefGoogle Scholar
  25. 25.
    Kunjachan S, Detappe A, Kumar R, Ireland T, Cameron L, Biancur DE, et al. Nanoparticle mediated tumor vascular disruption: a novel strategy in radiation therapy. Nano Lett. 2015;15(11):7488–96.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Kwak G, Jo SD, Kim D, Kim H, Kim MG, Kim K, et al. Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles. J Control Release. 2017;267:203–13.PubMedCrossRefGoogle Scholar
  27. 27.
    Ghalamfarsa G, Rastegari A, Atyabi F, Hassannia H, Hojjat-Farsangi M, Ghanbari A, et al. Anti-angiogenic effects of CD73-specific siRNA-loaded nanoparticles in breast cancer-bearing mice. J Cell Physiol. 2018;233(10):7165–77.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Zhang B, Jiang T, Tuo Y, Jin K, Luo Z, Shi W, et al. Captopril improves tumor nanomedicine delivery by increasing tumor blood perfusion and enlarging endothelial gaps in tumor blood vessels. Cancer Lett. 2017;410:12–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Yin M, Tan S, Bao Y, Zhang Z. Enhanced tumor therapy via drug co-delivery and in situ vascular-promoting strategy. J Control Release. 2017;258:108–20.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Wei G, Wang Y, Huang X, Yang G, Zhao J, Zhou S. Enhancing the accumulation of polymer micelles by selectively dilating tumor blood vessels with no for highly effective cancer treatment. Adv Healthc Mater. 2018;7(24):1801094.CrossRefGoogle Scholar
  31. 31.
    Wang X, Li H, Liu X, Tian Y, Guo H, Jiang T, et al. Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials. 2017;143:130–41.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Li W, Zhao X, Du B, Li X, Liu S, Yang XY, et al. Combining tumor microenvironment modulating nanoparticles with doxorubicin to enhance chemotherapeutic efficacy and boost antitumor immunity. Sci Rep. 2016;6:30619.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gordijo CR, Abbasi AZ, Amini MA, Lip HY, Maeda A, Cai P, et al. Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment. Adv Funct Mater. 2015;25(12):1858–72.CrossRefGoogle Scholar
  34. 34.
    Amini MA, Abbasi AZ, Cai P, Lip H, Gordijo CR, Li J, et al. Intelligent albumin–mno2nanoparticles as ph−/h2o2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. JNCI J Natl Cancer Inst. 2018;111:djy131.Google Scholar
  35. 35.
    Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, et al. Intelligent albumin–MnO2Nanoparticles as pH-/H2O2-responsive dissociable Nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater. 2016;28:7129–36.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Song G, Chen Y, Liang C, Yi X, Liu J, Sun X, et al. Catalase-loaded taox nanoshells as bio-nanoreactors combining high-z element and enzyme delivery for enhancing radiotherapy. Adv Mater. 2016;28(33):7143–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Liu T, Zhang N, Wang Z, Wu M, Chen Y, Ma M, et al. Endogenous catalytic generation of o2 bubbles for in situ ultrasound-guided high intensity focused ultrasound ablation. Acs nano. ACS Nano. 2017;11(9):9093–102.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kochlamazashvili G, Henneberger C, Bukalo O, Senkov O, Lievens PM, Westenbroek R, et al. The extracellular matrix molecule hyaluronic acid regulates hippocampal synaptic plasticity by modulating postsynaptic l- type ca 2 + channels. Neuron. 2012;67(1):116–28.CrossRefGoogle Scholar
  39. 39.
    Mouw JK, Ou G, Weaver VM, Regeneration T, Francisco S, Francisco S, et al. Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol. 2015;15(12):771–85.CrossRefGoogle Scholar
  40. 40.
    Wu X, Cai ZD, Lou LM, Chen ZR. The effects of inhibiting hedgehog signaling pathways by using specific antagonist cyclopamine on the chondrogenic differentiation of mesenchymal stem cells. Int J Mol Sci. 2013;14(3):5966–77.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med. 2011;17(11):1359–70.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA): the vascular disrupting agent. Chem Biol Drug Des. 2018;91(5):996–1006.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zhang B. CD73 promotes tumor growth and metastasis. Oncoimmunology. 2012;1(1):67–70.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Allard B, Turcotte M, Spring K, Pommey S, Royal I, Stagg J. Anti-CD73 therapy impairs tumor angiogenesis. Int J Cancer. 2014;134(6):1466–73.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Ghosh D, Peng X, Leal J, Mohanty RP. Peptides as drug delivery vehicles across biological barriers. J Pharm Investig. 2018;48(1):89–111.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Theek B, Baues M, Gremse F, Pola R, Pechar M, Negwer I, et al. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J Control Release. 2018;282:25–34.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Olsson AK, Larsson H, Dixelius J, Johansson I, Lee C, Oellig C, et al. A fragment of histidine-rich glycoprotein is a potent inhibitor of tumor vascularization. Cancer Res. 2004;64(2):599–605.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Poon IKH, Patel KK, Davis DS, Parish CR, Hulett MD. Histidine-rich glycoprotein: the Swiss Army knife of mammalian plasma. Blood. 2011;117(7):2093–101.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Conion J, Burdette DL, Sharma S. Mouse, but not human STING, binds and signals in response to the vascular disrupting agent DMXAA. J Immunol. 2013;190(10):5216–25.CrossRefGoogle Scholar
  52. 52.
    Wong PP, Demircioglu F, Ghazaly E, Alrawashdeh W, Stratford MRL, Scudamore CL, et al. Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread. Cancer Cell. 2015;27(1):123–37.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yi X, Xu M, Zhou H, Xiong S, Qian R, Chai Z, et al. Ultrasmall hyperbranched semiconducting polymer nanoparticles with different radioisotopes labeling for cancer theranostics. ACS Nano. 2018;12(9):9142–51.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Jain RK. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med. 2001;7(9):987–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Li K, Shi M, Qin S. Protein nanocage mediated fibroblast-activation protein targeted photoimmunotherapy to enhance cytotoxic t cell infiltration and tumor control. Oncol Ther. 2018;6(1):21–43.CrossRefGoogle Scholar
  56. 56.
    Van Den Beucken T, Koch E, Chu K, Rupaimoole R, Prickaerts P, Adriaens M, et al. Hypoxia promotes stem cell phenotypes and poor prognosis through epigenetic regulation of DICER. Nat Commun. 2014;5:5203.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ma Q, Zhang Y, Liu T, Jiang K, Wen Y, Fan Q, et al. Hypoxia promotes chemotherapy resistance by down-regulating SKA1 gene expression in human osteosarcoma. Cancer Biol Ther. 2017;18(3):177–85.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ke Q, Costa M. Hypoxia-inducible Factor-1 (HIF-1). Mol Pharmacol. 2006;70(5):1469–80.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Koukourakis MI, Giatromanolaki A, Skarlatos J, Corti L, Blandamura S, Piazza M, et al. Hypoxia inducible factor (HIF-1a and HIF-2a) expression in early esophageal cancer and response to photodynamic therapy and radiotherapy. Cancer Res. 2001;61(5):1830–2.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Rockwell S, Dobrucki I, Kim E, Marrison S, Vu V. Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med. 2009;9(4):442–58.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Nakagawa Y, Negishi Y, Shimizu M, Takahashi M, Ichikawa M, Takahashi H. Effects of extracellular pH and hypoxia on the function and development of antigen-specific cytotoxic T lymphocytes. Immunol Lett. 2015;167(2):72–86.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Barsoum IB, Koti M, Siemens DR, Graham CH. Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Res. 2014;74(24):7185–90.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chen B, Dai W, Mei D, Liu T, Li S, He B, et al. Comprehensively priming the tumor microenvironment by cancer-associated fibroblast-targeted liposomes for combined therapy with cancer cell-targeted chemotherapeutic drug delivery system. J Control Release. 2016;241:68–80.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Chen B, Wang Z, Sun J, Song Q, He B, Zhang H, et al. A tenascin C targeted nanoliposome with navitoclax for specifically eradicating of cancer-associated fibroblasts. Nanomed Nanotechnol Biol Med. 2016;12(1):131–41.CrossRefGoogle Scholar
  66. 66.
    Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu Z, et al. Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. Nano Lett. 2017;17(2):862–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ernsting MJ, Hoang B, Lohse I, Undzys E, Cao P, Do T, et al. Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle. J Control Release. 2015;206:122–30.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kim MG, Shon Y, Kim J, Oh YK. Selective activation of anticancer chemotherapy by cancer-associated fibroblasts in the tumor microenvironment. JNCI J Natl Cancer Inst. 2017;109(1):djw186.CrossRefGoogle Scholar
  69. 69.
    Saha S, Xiong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, et al. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. ACS Nano. 2016;10(12):10636–51.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Miao L, Liu Q, Lin CM, Luo C, Wang Y, Liu L, et al. Targeting tumor-associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res. 2017;77(3):719–31.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Qian Y, Qiao S, Dai Y, Xu G, Dai B, Lu L, et al. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano. 2017;11(9):9536–49.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Wang Y, Lin YX, Qiao SL, An HW, Ma Y, Qiao ZY, et al. Polymeric nanoparticles enable reversing macrophage in tumor microenvironment for immunotherapy. Biomaterials. 2017;112:153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Parayath NN, Parikh A, Amiji MM. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung Cancer model by intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b. Nano Lett. 2018;18(6):3571–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Rodell CB, Arlauckas SP, Cuccarese MF, Garris CS, Li R, Ahmed MS, et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat Biomed Eng. 2018;2(8):578–88.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zanganeh S, Hutter G, Spitler R, Lenkov O, Mahmoudi M, Shaw A, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11(11):986–94.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ou W, Jiang L, Thapa RK, Soe ZC, Poudel K, Chang JH, et al. Combination of NIR therapy and regulatory T cell modulation using layer-by-layer hybrid nanoparticles for effective cancer photoimmunotherapy. Theranostics. 2018;8(17):4574–90.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Feng B, Zhou F, Hou B, Wang D, Wang T, Fu Y, et al. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv Mater. 2018;30:1803001.CrossRefGoogle Scholar
  78. 78.
    Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, et al. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Control Release. 2016;231:17–28.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Plebanek MP, Bhaumik D, Bryce PJ, Thaxton CS. Scavenger receptor type b1 and lipoprotein nanoparticle inhibit myeloid derived suppressor cells. Mol Cancer Ther. 2018;17(3):686–97.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kong M, Tang J, Qiao Q, Wu T, Qi Y, Tan S, et al. Biodegradable hollow mesoporous silica nanoparticles for regulating tumor microenvironment and enhancing antitumor efficiency. Theranostics. 2017;7(13):3276–92.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Zhang Y, Bush X, Yan B, Chen JA. Gemcitabine nanoparticles promote antitumor immunity against melanoma. Biomaterials. 2019;189:48–59.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers (Basel). 2015;7(4):2443–58.CrossRefGoogle Scholar
  83. 83.
    Prakash J. Cancer-associated fibroblasts: perspectives in cancer therapy. Trends Cancer. 2016;2(6):277–9.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Takahashi H, Sakakura K, Kudo T, Toyoda M, Kaira K, Oyama T, et al. Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages. Oncotarget. 2017;8(5):8633–47.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G, et al. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano. 2013;7(8):6988–96.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, et al. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proc Natl Acad Sci. 2014;111(41):14900–5.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl. 2014;8:454–63.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, et al. Stromal biology and therapy in pancreatic cancer. Gut. 2011;60(6):861–8.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6(3):1670–90.CrossRefGoogle Scholar
  90. 90.
    Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014;41(1):49–61.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ramanathan S, Jagannathan N. Tumor associated macrophage: a review on the phenotypes, traits and functions. Iran J Cancer Prev. 2014;7(1):1–8.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001;193(6):727–40.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Henry CJ, Ornelles DA, Mitchell LM, Brzoza-Lewis KL, Hiltbold EM. IL-12 produced by dendritic cells augments CD8+ T cell activation through the production of the chemokines CCL1 and CCL17. J Immunol. 2008;181(12):8576–84.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Watkins SK, Egilmez NK, Suttles J, Stout RD. IL-12 rapidly alters the functional profile of tumor-associated and tumor-infiltrating macrophages in vitro and in vivo. J Immunol. 2007;178(3):1357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Chaudhuri AA, So AY-L, Sinha N, Gibson WSJ, Taganov KD, O’Connell RM, et al. MicroRNA-125b potentiates macrophage activation. J Immunol. 2011;187(10):5062–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Singh M, Khong H, Dai Z, Huang X-F, Wargo JA, Cooper ZA, et al. Effective innate and adaptive antimelanoma immunity through localized tlr7/8 activation. J Immunol. 2014;193(9):4722–31.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rook AH, Gelfand JC, Wysocka M, Troxel AB, Benoit B, Surber C, et al. Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood. 2015;126(12):1452–61.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Auerbach M, Chertow GM, Rosner M. Ferumoxytol for the treatment of iron deficiency anemia. Expert Rev Hematol. 2018;11(10):829–34.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Qian B-Z, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Jonuleit H, Bopp T, Becker C. Treg cells as potential cellular targets for functionalized nanoparticles in cancer therapy. Nanomedicine. 2016;11(20):2699–709.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo X, et al. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget. 2017;8(8):13703–15.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood. 2018;131(1):58–67.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Chaudhary B, Elkord E. Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines. 2016;4(3):28.PubMedCentralCrossRefGoogle Scholar
  104. 104.
    Larmonier N, Janikashvili N, LaCasse CJ, Larmonier CB, Cantrell J, Situ E, et al. Imatinib mesylate inhibits CD4+ CD25+ regulatory T cell activity and enhances active immunotherapy against BCR-ABL- tumors. J Immunol. 2008;181(10):6955–63.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Balachandran VP, Cavnar MJ, Zeng S, Bamboat ZM, Ocuin LM, Obaid H, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17(9):1094–100.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Park K. Combined therapy of imatinib and an anti-CTLA4 immune-checkpoint inhibitor. J Control Release. 2018;281:196.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Murphy AJ, Woollard KJ, Suhartoyo A, Stirzaker RA, Shaw J, Sviridov D, et al. Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler Thromb Vasc Biol. 2011;31(6):1333–41.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Chinetti-Gbaguidi G, Colin S, Staels B. Macrophage subsets in atherosclerosis. Nat Rev Cardiol. 2015;12(1):10–7.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104–16.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Zamanian-Daryoush M, Lindner D, Tallant TC, Wang Z, Buffa J, Klipfell E, et al. The cardioprotective protein apolipoprotein a1 promotes potent anti-tumorigenic effects. J Biol Chem. 2013;288(29):21237–52.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Su F, Kozak KR, Imaizumi S, Gao F, Amneus MW, Grijalva V, et al. Apolipoprotein A-I (apoA-I) and apoA-I mimetic peptides inhibit tumor development in a mouse model of ovarian cancer. Proc Natl Acad Sci. 2010;107(46):19997–20002.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Chandler PD, Song Y, Lin J, Zhang S, Sesso HD, Mora S, et al. Lipid biomarkers and long-term risk of cancer in the Women’s health study. Am J Clin Nutr. 2016;103(6):1397–407.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res. 2005;11(18):6713–21.CrossRefGoogle Scholar
  114. 114.
    Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol. 2009;9(7–8):900–9.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Burnett AK, Russell NH, Hills RK, Bowen D, Kell J, Knapper S, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16(13):1295–305.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res. 2006;66(18):9299–307.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Curti B, Daniels GA, McDermott DF, Clark JI, Kaufman HL, Logan TF, et al. Improved survival and tumor control with Interleukin-2 is associated with the development of immune-related adverse events: data from the PROCLAIMSM registry. J Immunother Cancer. 2017;5(1):1–9.CrossRefGoogle Scholar
  118. 118.
    Marsh T, Pietras K, McAllister SS. Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta Mol basis Dis. 2013;1832(7):1070–8.CrossRefGoogle Scholar
  119. 119.
    Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B, et al. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep. 2014;4:1–9.Google Scholar
  120. 120.
    Zhao X, Li L, Starr T, Subramanian S. Tumor location impacts immune response in mouse models of colon cancer. Oncotarget. 2017;8(33):54775–87.PubMedPubMedCentralGoogle Scholar
  121. 121.
    Zhao P, Xia G, Dong S, Jiang Z-X, Chen M. An iTEP-salinomycin nanoparticle that specifically and effectively inhibits metastases of 4T1 orthotopic breast tumors. Biomaterials. 2016;93:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Song W, Shen L, Wang Y, Liu Q, Goodwin TJ, Li J, et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat Commun. 2018;9:2237.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2017;16(4):489–96.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics. 2014;4(1):81–9.CrossRefGoogle Scholar
  125. 125.
    Lipson EJ, Forde PM, Hammers HJ, Emens LA, Taube JM, Topalian SL. Antagonists of PD-1 and PD-L1 in Cancer treatment. Semin Oncol. 2015;42(4):587–600.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Le QV, Choi J, Oh YK. Nano delivery systems and cancer immunotherapy. J Pharm Investig. 2018;48(5):527–39.CrossRefGoogle Scholar
  127. 127.
    Le QV, Yang G, Wu Y, Jang HW, Shokouhimehr M, Oh YK. Nanomaterials for modulating innate immune cells in cancer immunotherapy. Asian J Pharm Sci. 2018;14(1):16–29.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  1. 1.College of Pharmacy and Research Institute of Pharmaceutical SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations