Advertisement

The AAPS Journal

, 21:26 | Cite as

Multiplexed Gene Expression as a Characterization of Bioactivity for Interferon Beta (IFN-β) Biosimilar Candidates: Impact of Innate Immune Response Modulating Impurities (IIRMIs)

  • Eduardo F. Mufarrege
  • Lydia A. Haile
  • Marina Etcheverrigaray
  • Daniela I. VerthelyiEmail author
Research Article
  • 9 Downloads

Abstract

Recombinant human interferon-β (rhIFN-β) therapy is the first-line treatment in relapsing-remitting forms of multiple sclerosis (MS). The mechanism of action underlying its therapeutic activity is only partially understood as IFN-βs induce the expression of over 1000 genes modifying multiple immune pathways. Currently, assessment of potency for IFN-β products is based on their antiviral effect, which is not linked to its therapeutic effect. Here, we explore the use of a multiplexed gene expression system to more broadly characterize IFN-β bioactivity. We find that MM6 cells stimulated with US-licensed rhIFN-βs induce a dose-dependent and reproducible pattern of gene expression. This pattern of gene expression was used to compare the bioactivity profile of biosimilar candidates with the corresponding US-licensed rhIFN-β products, Rebif and Betaseron. While the biosimilar candidate for Rebif matched the pattern of gene expression, there were differences in the expression of a subset of interferon-inducible genes including CXCL-10, CXCL-11, and GBP1 induced by the biosimilar candidate for Betaseron. Assessment of product impurities in both products suggested that the difference was rooted in the presence of innate immune response modulating impurities (IIRMIs) in the licensed product. These studies indicate that determining the expression levels for an array of reporter genes that monitor different pathways can be informative as part of the demonstration of biosimilarity or comparability for complex immunomodulatory products such as IFN-β, but the sensitivity of each gene to potential impurities in the product should be examined to fully understand the results.

Key Words

bioactivity biosimilarity comparability gene expression impurities innate immune response modulating impurities interferon beta 

Notes

Acknowledgements

The assertions herein are the private ones from the authors and are not to be construed as official or as reflecting the views or policies of the Food and Drug Administration. This study was supported in part by a Senior Postgraduate Research Fellowship Award to S.P. from the Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug Administration. EM and ME are members of Consejo Nacional de Investigaciones Científicas y Técnicas. We thank Dr. Steven Kozlowski, Dr. Gerry Feldman, Dr. Amy Rosenberg, and Dr. Susan Kirshner for helpful discussions and careful review of the manuscript.

Funding Information

This work was partially supported by a CDER Critical Path grant.

Supplementary material

12248_2019_300_MOESM1_ESM.pdf (676 kb)
ESM 1 (PDF 675 kb)

References

  1. 1.
    Kasper LH, Reder AT. Immunomodulatory activity of interferon-beta. Annals of Clinical and Translational Neurology. 2014;1(8):622–31.CrossRefGoogle Scholar
  2. 2.
    Dhib-Jalbut S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology. 2002;58(8 Suppl 4):S3–9.CrossRefGoogle Scholar
  3. 3.
    Rudick RA, Goelz SE. Beta-interferon for multiple sclerosis. Exp Cell Res. 2011;317(9):1301–11.CrossRefGoogle Scholar
  4. 4.
    Meager A, Dolman C, Dilger P, Bird C, Giovannoni G, Schellekens H, et al. An assessment of biological potency and molecular characteristics of different innovator and noninnovator interferon-beta products. J Interf Cytokine Res. 2011;31(4):383–92.CrossRefGoogle Scholar
  5. 5.
    Stroncek DF, Jin P, Wang E, Jett B. Potency analysis of cellular therapies: the emerging role of molecular assays. J Transl Med. 2007;5(1):24.CrossRefGoogle Scholar
  6. 6.
    Blank T, Prinz M. Type I interferon pathway in CNS homeostasis and neurological disorders. Glia. 2017;65(9):1397–406.CrossRefGoogle Scholar
  7. 7.
    Comabella M, Lunemann JD, Rio J, Sanchez A, Lopez C, Julia E, et al. A type I interferon signature in monocytes is associated with poor response to interferon-beta in multiple sclerosis. Brain. 2009;132(Pt 12):3353–65.CrossRefGoogle Scholar
  8. 8.
    Henig N, Avidan N, Mandel I, Staun-Ram E, Ginzburg E, Paperna T, et al. Interferon-beta induces distinct gene expression response patterns in human monocytes versus T cells. PLoS One. 2013;8(4):e62366.CrossRefGoogle Scholar
  9. 9.
    Markowitz CE. Interferon-beta: mechanism of action and dosing issues. Neurology. 2007;68(24 Suppl 4):S8–11.CrossRefGoogle Scholar
  10. 10.
    Jakimovski D, Kolb C, Ramanathan M, Zivadinov R, Weinstock-Guttman B. Interferon beta for multiple sclerosis. Cold Spring Harb Perspect Med. 2018;8(11).Google Scholar
  11. 11.
    Barbero P, Bergui M, Versino E, Ricci A, Zhong JJ, Ferrero B, et al. Every-other-day interferon beta-1b versus once-weekly interferon beta-1a for multiple sclerosis (INCOMIN trial) II: analysis of MRI responses to treatment and correlation with Nab. Mult Scler. 2006;12(1):72–6.CrossRefGoogle Scholar
  12. 12.
    Grossberg SE, Oger J, Grossberg LD, Gehchan A, Klein JP. Frequency and magnitude of interferon β neutralizing antibodies in the evaluation of interferon β immunogenicity in patients with multiple sclerosis. J Interf Cytokine Res. 2011;31(3):337–44.CrossRefGoogle Scholar
  13. 13.
    Bertolotto A, Deisenhammer F, Gallo P, Sölberg SP. Immunogenicity of interferon beta: differences among products. J Neurol. 2004;251(2):ii15–24.PubMedGoogle Scholar
  14. 14.
    Haile LA, Polumuri SK, Rao R, Kelley-Baker L, Kryndushkin D, Rajaiah R, et al. Cell based assay identifies TLR2 and TLR4 stimulating impurities in interferon beta. Sci Rep. 2017;7(1):10490.CrossRefGoogle Scholar
  15. 15.
    Haji Abdolvahab M, Mofrad MRK, Schellekens H. Interferon beta: from molecular level to therapeutic effects. Int Rev Cell Mol Biol. 2016;326:343–72.CrossRefGoogle Scholar
  16. 16.
    Vogel SN, Friedman RM, Hogan MM. Measurement of antiviral activity induced by interferons alpha, beta, and gamma. Curr Protoc Immunol. 2001;Chapter 6:Unit 6.9.Google Scholar
  17. 17.
    Burgi Mde L, Prieto C, Etcheverrigaray M, Kratje R, Oggero M, Bollati-Fogolin M. WISH cell line: from the antiviral system to a novel reporter gene assay to test the potency of human IFN-alpha and IFN-beta. J Immunol Methods. 2012;381(1–2):70–4.CrossRefGoogle Scholar
  18. 18.
    Nistal-Villan E, Poutou J, Rodriguez-Garcia E, Bunuales M, Carte-Abad B, Prieto J, et al. A versatile vector for in vivo monitoring of type I interferon induction and signaling. PLoS One. 2016;11(3):e0152031.CrossRefGoogle Scholar
  19. 19.
    Ziegler-Heitbrock HW, Thiel E, Futterer A, Herzog V, Wirtz A, Riethmuller G. Establishment of a human cell line (Mono Mac 6) with characteristics of mature monocytes. Int J Cancer. 1988;41(3):456–61.CrossRefGoogle Scholar
  20. 20.
    Haile LA, Puig M, Kelley-Baker L, Verthelyi D. Detection of innate immune response modulating impurities in therapeutic proteins. PLoS One. 2015;10(4).Google Scholar
  21. 21.
    Taniguchi T, Takaoka A. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol. 2001;2:378.CrossRefGoogle Scholar
  22. 22.
    Nafissi S, Azimi A, Amini-Harandi A, Salami S, Shahkarami MA, Heshmat R. Comparing efficacy and side effects of a weekly intramuscular biogeneric/biosimilar interferon beta-1a with Avonex in relapsing remitting multiple sclerosis: a double blind randomized clinical trial. Clin Neurol Neurosurg 2012;114(7):986–989.Google Scholar
  23. 23.
    Declerck P, Danesi R, Petersel D, Jacobs I. The language of biosimilars: clarification, definitions, and regulatory aspects. Drugs. 2017;77(6):671–7.CrossRefGoogle Scholar
  24. 24.
    Koike F, Satoh J, Miyake S, Yamamoto T, Kawai M, Kikuchi S, et al. Microarray analysis identifies interferon beta-regulated genes in multiple sclerosis. J Neuroimmunol. 2003;139(1–2):109–18.CrossRefGoogle Scholar
  25. 25.
    Zula JA, Green HC, Ransohoff RM, Rudick RA, Stark GR, van Boxel-Dezaire AHH. The role of cell type-specific responses in IFN-β therapy of multiple sclerosis. Proc Natl Acad Sci 2011;108(49):19689–19694.Google Scholar
  26. 26.
    Amirkhani A, Rajda C, Arvidsson B, Bencsik K, Boda K, Seres E, et al. Interferon-beta affects the tryptophan metabolism in multiple sclerosis patients. Eur J Neurol. 2005;12(8):625–31.CrossRefGoogle Scholar
  27. 27.
    van Boxel-Dezaire AH, Zula JA, Xu Y, Ransohoff RM, Jacobberger JW, Stark GR. Major differences in the responses of primary human leukocyte subsets to IFN-beta. J Immunol 2010;185(10):5888–5899.Google Scholar
  28. 28.
    Taheri M, Ghafouri-Fard S, Solgi G, Sayad A, Mazdeh M, Omrani MD. Determination of cytokine levels in multiple sclerosis patients and their relevance with patients’ response to Cinnovex. Cytokine. 2017;96:138–43.CrossRefGoogle Scholar
  29. 29.
    Haile LA, Puig M, Polumuri SK, Ascher J, Verthelyi D. In vivo effect of innate immune response modulating impurities on the skin milieu using a macaque model: impact on product immunogenicity. J Pharm Sci. 2016;106(3):751.CrossRefGoogle Scholar
  30. 30.
    Verthelyi D, Wang V. Trace levels of innate immune response modulating impurities (IIRMIs) synergize to break tolerance to therapeutic proteins. PLoS One. 2010;5(12):e15252.CrossRefGoogle Scholar

Copyright information

© American Association of Pharmaceutical Scientists 2019

Authors and Affiliations

  • Eduardo F. Mufarrege
    • 1
    • 2
  • Lydia A. Haile
    • 1
  • Marina Etcheverrigaray
    • 2
  • Daniela I. Verthelyi
    • 1
    Email author
  1. 1.Laboratory of Immunology, Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and ResearchFood and Drug AdministrationSilver SpringUSA
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Cultivos Celulares, FBCB, UNLSanta FeArgentina

Personalised recommendations