A Non-invasive Liquid Biopsy Screening of Urine-Derived Exosomes for miRNAs as Biomarkers in Endometrial Cancer Patients
Abstract
Exosomes have great potential to serve as a source of diagnostic and prognostic biomarkers for endometrial cancer (EC). Urine-derived exosomes from patients with EC and patients with symptoms of EC, but without established EC, were used to evaluate a unique miRNA expression profile. Of the 84 miRNA studied, 57 were amplified in qPCR, suggesting the differential packaging of miRNA in exosomes. Further, hsa-miR-200c-3p was identified to be enriched the most. Various bioinformatics and in silico tools were used to evaluate the biological significance of hsa-miR-200c-3p in EC. We conclude that differential miRNA in exosomes can be utilized for discovery of biomarker signatures and EC diagnosis; hsa-miR-200c-3p is one such candidate. Urine-derived exosomes pave the way for the development of non-invasive biomarkers.
KEY WORDS
exosomes endometrial cancer miRNA liquid biopsy biomarkersNotes
Acknowledgements
The authors thank all the patients for providing the samples and the dedicated cancer center staff for assistance in sample collection. Editorial assistance from Ms. Kathy Kyler at the office of Vice President of Research, OUHSC, is appreciated. Rajagopal Ramesh is an Oklahoma TSET Research Scholar and holds the Jim and Christy Everest Endowed Chair in Cancer Developmental Therapeutics.
Author Contributions
AS, KM, and RR conducted the studies and collected data; YDZ performed statistical analysis; AS, KM, RR, DND, YDZ, and RR conceived and designed the studies; AS and RR wrote the manuscript; AS, KM, RR, DND, YDZ, and RR critically analyzed and interpreted the data; AS, KM, RR, DND, YDZ, and RR critically reviewed, provided suggestions, and edited the manuscript; and RR supervised the project.
Funding Information
The work was supported in part by funds received from the Stephenson Cancer Center Seed Grant (RR), Presbyterian Health Foundation Seed Grant (RR), Presbyterian Health Foundation Bridge Grant (RR), Chapman Foundation, and Jim and Christy Everest Endowed Chair in Cancer Developmental Therapeutics (RR) at the University of Oklahoma Health Sciences Center.
Compliance with Ethical Standards
Conflict of Interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.ACS, Available from: https://www.cancer.org/cancer/endometrial-cancer/about/key-statistics.html 2017.
- 2.Fleming GF. Second-line therapy for endometrial cancer: the need for better options. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(31):3535–40.CrossRefGoogle Scholar
- 3.Fader AN, Arriba LN, Frasure HE, von Gruenigen VE. Endometrial cancer and obesity: epidemiology, biomarkers, prevention and survivorship. Gynecol Oncol. 2009;114(1):121–7.CrossRefPubMedGoogle Scholar
- 4.Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neuro Oncol. 2013;113(1):1–11.CrossRefGoogle Scholar
- 5.Keller S, Ridinger J, Rupp A-K, Janssen JW, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9:86.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;3:1–29.Google Scholar
- 7.Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42(11):7290–304.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Qazi KR, Torregrosa Paredes P, Dahlberg B, Grunewald J, Eklund A, Gabrielsson S. Proinflammatory exosomes in bronchoalveolar lavage fluid of patients with sarcoidosis. Thorax. 2010;65(11):1016–24.CrossRefPubMedGoogle Scholar
- 9.Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–21.CrossRefPubMedPubMedCentralGoogle Scholar
- 10.van Empel VP, De Windt LJ, da Costa Martins PA. Circulating miRNAs: reflecting or affecting cardiovascular disease? Curr Hypertens Rep. 2012;14(6):498–509.CrossRefPubMedGoogle Scholar
- 11.Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.CrossRefPubMedGoogle Scholar
- 12.Whiteside TL. Tumor-derived exosomes and their role in cancer progression. Adv Clin Chem. 2016;74:103–41.CrossRefPubMedPubMedCentralGoogle Scholar
- 13.Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ. Functions and therapeutic roles of exosomes in cancer. Front Oncol. 2014;4:127.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis and drug resistance: a comprehensive review. Cancer Metastasis Rev. 2013;32(3–4):623–42.CrossRefPubMedGoogle Scholar
- 15.Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers. 2017; 9(8): doi: 10.3390.Google Scholar
- 16.Hannafon BN, Tigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. 2016;18(1):90.CrossRefPubMedPubMedCentralGoogle Scholar
- 17.Liu C, Eng C, Shen J, Lu Y, Takata Y, Mehdizadeh A, et al. Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget. 2016;7(46):76250–60.PubMedPubMedCentralGoogle Scholar
- 18.Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.CrossRefPubMedGoogle Scholar
- 19.Gilabert-Estelles J, Braza-Boils A, Ramon LA, Zorio E, Medina P, Espana F, et al. Role of microRNAs in gynecological pathology. Curr Med Chem. 2012;19(15):2406–13.CrossRefPubMedGoogle Scholar
- 20.Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, et al. Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. 2016;6:38541.CrossRefPubMedPubMedCentralGoogle Scholar
- 21.Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A. 2004;101(36):13368–73.CrossRefPubMedPubMedCentralGoogle Scholar
- 22.Khurana R, Ranches G, Schafferer S, Lukasser M, Rudnicki M, Mayer G, et al. Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA. 2017;23(2):142–52.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Delić D, Eisele C, Schmid R, Baum P, Wiech F, Gerl M, et al. Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS One. 2016;11(3):e0150154.CrossRefPubMedPubMedCentralGoogle Scholar
- 24.Principe S, Jones EE, Kim Y, Sinha A, Nyalwidhe JO, Brooks J, et al. In-depth proteomic analyses of exosomes isolated from expressed prostatic secretions in urine. Proteomics. 2013;13(0):1667–71.CrossRefPubMedPubMedCentralGoogle Scholar
- 25.Knepper MA, Pisitkun T. Exosomes in urine: who would have thought…? Kidney Int. 2007;72(9):1043–5.CrossRefPubMedGoogle Scholar
- 26.Fernández-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA. (2010). Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 2010;77(8):736–42.CrossRefPubMedPubMedCentralGoogle Scholar
- 27.Li M, Zeringer E, Barta T, Schageman J, Cheng A, Vlassov AV. Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers. Philos Trans R Soc B. 2014;369(1652):20130502. https://doi.org/10.1098/rstb.2013.0502.CrossRefGoogle Scholar
- 28.Foj L, Ferrer F, Serra M, Arévalo A, Gavagnach M, Giménez N, et al. Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis. Prostate. 2017;77(6):573–83.CrossRefPubMedGoogle Scholar
- 29.Rodríguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, et al. Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer. 2017;16:156.CrossRefPubMedPubMedCentralGoogle Scholar
- 30.Osamu I, Hiroshi O, Horino T, Nakamura T, Hosotani M, Mizoguchi T, et al. Urinary exosome-derived microRNAs reflecting the changes of renal function and histopathology in dogs. Sci Rep. 2017;11(7):40340.Google Scholar
- 31.Lötvall J. Hill AF. Hochberg F, Buzás EI, Di Vizio D, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of Extracellular Vesicles. 2014;3: https://doi.org/10.3402/jev.v3.26913.
- 32.Wang Y, Dong X, Hu B, Wang XJ, Wang Q, Wang WL. The effects of Micro-429 on inhibition of cervical cancer cells through targeting ZEB1 and CRKL. Biomed Pharmacother. 2016;80:311–21.CrossRefPubMedGoogle Scholar
- 33.Yue S, Wang L, Zhang H, Min Y, Lou Y, Sun H, et al. miR-139-5p suppresses cancer cell migration and invasion through targeting ZEB1 and ZEB2 in GBM. Tumour Biol. 2015;36(9):6741–9.CrossRefPubMedGoogle Scholar
- 34.Sinh ND, Endo K, Miyazawa K, Saitoh M. Ets1 and ESE1 reciprocally regulate expression of ZEB1/ZEB2, dependent on ERK1/2 activity, in breast cancer cells. Cancer Sci. 2017;108(5):952–60.CrossRefPubMedPubMedCentralGoogle Scholar
- 35.Wang T, Chen X, Qiao W, Kong L, Sun D, Li Z. Transcription factor E2F1 promotes EMT by regulating ZEB2 in small cell lung cancer. BMC Cancer. 2017;17:719.CrossRefPubMedPubMedCentralGoogle Scholar
- 36.Sulaiman SA, Ab Mutalib N-S, Jamal R. miR-200c regulation of metastases in ovarian cancer: potential role in epithelial and mesenchymal transition. Frontiers in. Pharmacology. 2016;7:271.Google Scholar
- 37.Kumar S, Nag A, Mandal CC. A comprehensive review on miR-200c, a promising cancer biomarker with therapeutic potential. Curr Drug Targets. 2015;16(12):1381–403.CrossRefPubMedGoogle Scholar
- 38.Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.CrossRefGoogle Scholar
- 39.Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13.CrossRefGoogle Scholar
- 40.Dijkhuizen FPHLJ, Mol BWJ, Brölmann HAM, Heintz APM. The accuracy of endometrial sampling in the diagnosis of patients with endometrial carcinoma and hyperplasia. Cancer. 2000;89:1765–72.CrossRefPubMedGoogle Scholar
- 41.Kirschner MA, Schneider G, Ertel NH, Worton E. Obesity, androgens, estrogens, and cancer risk. Cancer Res. 1982;42(8 Suppl):3281s–5s.PubMedGoogle Scholar
- 42.Motamedinia P, Scott AN, Bate KL, Sadeghi N, Salazar G, Shapiro E, et al. Urine exosomes for non-invasive assessment of gene expression and mutations of prostate cancer. PLoS One. 2016;11(5):e0154507.CrossRefPubMedPubMedCentralGoogle Scholar
- 43.Hessels D, Schalken JA. Urinary biomarkers for prostate cancer: a review. 2013. Asian J Androl. 2013;15(3):333–9.CrossRefPubMedPubMedCentralGoogle Scholar
- 44.Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.CrossRefPubMedGoogle Scholar
- 45.Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.CrossRefPubMedGoogle Scholar
- 46.Falcone G, Felsani A, D’Agnano I. Signaling by exosomal microRNAs in cancer. J Exp Clin Cancer Res. 2015; CR;34(1):32.CrossRefPubMedPubMedCentralGoogle Scholar
- 47.Jayaraman M, Radhakrishnan R, Mathews CA, Yan M, Husain S, Moxley KM, et al. Identification of novel diagnostic and prognostic miRNA signatures in endometrial cancer. Genes Cancer. 2017;8(5–6):566–76.PubMedPubMedCentralGoogle Scholar
- 48.Jiao A, Sui M, Zhang L, Sun P, Geng D, Zhang W, et al. MicroRNA-200c inhibits the metastasis of non-small cell lung cancer cells by targeting ZEB2, an epithelial-mesenchymal transition regulator. Mol Med Rep. 2016;13(4):3349–55.CrossRefPubMedGoogle Scholar
- 49.Jurmeister S, Baumann M, Balwierz A, Keklikoglou I, Ward A, Uhlmann S, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol Cell Biol. 2012;32(3):633–51.CrossRefPubMedPubMedCentralGoogle Scholar
- 50.Pan Y, Liang H, Chen W, Zhang H, Wang N, Wang F, et al. microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs. RNA Biol. 2015;12(3):276–89.CrossRefPubMedPubMedCentralGoogle Scholar
- 51.Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62(9):1315–26.CrossRefPubMedGoogle Scholar
- 52.Cittelly DM, Dimitrova I, Howe EN, Cochrane DR, Jean A, Spoelstra NS, et al. Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel. Mol Cancer Ther. 2012;11(12):2556–65.CrossRefPubMedPubMedCentralGoogle Scholar
- 53.Ma C, Huang T, Ding Y-C, Yu W, Wang Q, Meng B, et al. microRNA-200c overexpression inhibits chemoresistance, invasion and colony formation of human pancreatic cancer stem cells. Int J Clin Exp Pathol. 2015;8(6):6533–9.PubMedPubMedCentralGoogle Scholar
- 54.Kopp F, Oak PS, Wagner E, Roidl A. miR-200c sensitizes breast cancer cells to doxorubicin treatment by decreasing TrkB and Bmi1 expression. PLoS One. 2012;7(11):e50469.CrossRefPubMedPubMedCentralGoogle Scholar