Advertisement

Integrated data analysis in the presence of emigration and mark loss

  • Toby J. Reynolds
  • Ruth King
  • John Harwood
  • Morten Frederiksen
  • Michael P. Harris
  • Sarah Wanless
Article

Abstract

Integrated data analyses are becoming increasingly common in studies of wild animal populations where two or more separate sources of data contain information about common parameters. These types of analyses provide robust parameter estimates which fully reflect all available information, as well as estimates of parameters that would be unidentifiable in a separate analysis. In this article we present an integrated Bayesian analysis of four long-term datasets (counts, two mark-recapture-recovery time series, and productivity) relating to a colony of common guillemots (Uria aalge) on the Isle of May, southeast Scotland. A complication when considering the dynamics of populations of this kind is the unobservable emigration of immature animals. In the analysis of mark-recapture-recovery data, the rate of emigration is frequently confounded with that of mark loss and it is only possible to estimate the product of these parameters. By combining all available data for the Isle of May guillemots in an integrated population model, we are able to estimate these parameters separately and thus obtain improved estimates of prerecruitment emigration.

Key Words

Bayesian inference Combined data Common guillemot (Uria aalgeMarkov chain Monte Carlo (MCMC) Population dynamics State-space model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besbeas, P., and Freeman, S. N. (2006), “Methods for Joint Inference From Panel Survey and Demographic Data,” Ecology, 87 (5), 1138–1145.CrossRefGoogle Scholar
  2. Besbeas, P., Borysiewicz, R. S., and Morgan, B. J. T. (2009), “Completing the Ecological Jigsaw” in Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics Series, Vol. 3, eds. D. L. Thomson, E. G. Cooch, and M. J. Conroy, pp. 513–539.Google Scholar
  3. Besbeas, P., Freeman, S. N., Morgan, B. J. T., and Catchpole, E. A. (2002), “Integrating Mark-Recapture-Recovery and Census Data to Estimate Animal Abundance and Demographic Parameters,” Biometrics, 58 (3), 540–547.CrossRefMathSciNetGoogle Scholar
  4. Borysiewicz, R. S., Morgan, B. J. T., Hénaux, V., Bregnballe, T., Lebreton, J.-D., and Gimenez, O. (2009), “An Integrated Analysis of Multisite Recruitment, Mark-Recapture-Recovery and Multisite Census Data,” in Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics Series, Vol. 3, eds. D. L. Thomson, E. G. Cooch, and M. J., Conroy, pp. 579–591.Google Scholar
  5. Brooks, S. P. (1998), “Markov Chain Monte Carlo Method and Its Application,” Journal of the Royal Statistical Society, Ser. D, 47 (1), 69–100.CrossRefGoogle Scholar
  6. Brooks, S. P., and Gelman, A. (1998), “General Methods for Monitoring Convergence of Iterative Simulations,” Journal of Computational and Graphical Statistics, 7 (4), 434–455.CrossRefMathSciNetGoogle Scholar
  7. Brooks, S. P., Freeman, S. N., Greenwood, J. J. D., King, R., and Mazzetta, C. (2008), “Quantifying Conservation Concern—Bayesian Statistics, Birds and the Red Lists,” Biological Conservation, 141 (5), 1436–1441.CrossRefGoogle Scholar
  8. Brooks, S. P., King, R., and Morgan, B. J. T. (2004), “A Bayesian Approach to Combining Animal Abundance and Demographic Data,” Animal Biodiversity and Conservation, 27 (1), 515–529.Google Scholar
  9. Buckland, S. T., Newman, K. B., Thomas, L., and Koesters, N. B. (2004), “State-Space Models for the Dynamics of Wild Animal Populations,” Ecological Modelling, 171 (1–2), 157–175.CrossRefGoogle Scholar
  10. Burnham, K. P. (1993), “A Theory for Combined Analysis of Ring Recovery and Recapture Data,” in Marked Individuals in the Study of Bird Population, eds. J.-D. Lebreton and P. M. North, Basel: Birkhäuser, pp. 199–213.Google Scholar
  11. Catchpole, E. A., Freeman, S. N., Morgan, B. J. T., and Harris, M. P. (1998), “Integrated Recovery/Recapture Data Analysis,” Biometrics, 54 (1), 33–46.MATHCrossRefGoogle Scholar
  12. Catchpole, E. A., Morgan, B. J. T., Coulson, T. N., Freeman, S. N., and Albon, S. D. (2000), “Factors Influencing Soay Sheep Survival,” Journal of the Royal Statistical Society, Ser. C 49 (4), 453–472.CrossRefMathSciNetGoogle Scholar
  13. Clark, J. A., Robinson, R. A., Balmer, D. E., Blackburn, J. R., Grantham, M. J., Griffin, B. M., Marchant, J. H., Risely, K., and Adams, S. Y. (2005), “Bird Ringing in Britain and Ireland in 2004,” Ringing & Migration, 22 (4), 213–253.Google Scholar
  14. Crespin, L., Harris, M. P., Lebreton, J.-D., Frederiksen, M., and Wanless, S. (2006a), “Recruitment to a Seabird Population Depends on Environmental Factors and on Population, Size,” Journal of Animal Ecology, 75 (1), 228–238.CrossRefGoogle Scholar
  15. Crespin, L., Harris, M. P., Lebreton, J.-D., and Wanless, S. (2006b), “Increased Adult Mortality and Reduced Breeding Success With Age in a Population of Common Guillemot Uria aalge Using Marked Birds of Unknown Age,” Journal of Avian Biology, 37 (3), 273–282.CrossRefGoogle Scholar
  16. Frederiksen, M., and Bregnballe, T. (2000), “Evidence for Density-Dependent Survival in Adult Cormorants From a Combined Analysis of Recoveries and Resightings,” Journal of Animal Ecology, 69 (5), 737–752.CrossRefGoogle Scholar
  17. Frederiksen, M., Hearn, R. D., Mitchell, C., Sigfússon, A., Swann, R. L., and Fox, A. D. (2004), “The Dynamics of Hunted Icelandic Goose Populations: A Reassessment of the Evidence,” Journal of Applied Ecology, 41 (2), 315–334.CrossRefGoogle Scholar
  18. Freeman, S. N., and Crick, H. Q. P. (2003), “The Decline of the Spotted Flycatcher Muscicapa striata in the UK: An Integrated Population Model,” Ibis, 145 (3), 400–412.CrossRefGoogle Scholar
  19. Freeman, S. N., Robinson, R. A., Clark, J. A., Griffin, B. M., and Adams, S. Y. (2007), “Changing Demography and Population Decline in the Common Starling Sturnus vulgaris: A Multisite Approach to Integrated Population Monitoring,” Ibis, 149 (3), 587–596.CrossRefGoogle Scholar
  20. Gauthier, G., Besbeas, P., Lebreton, J.-D., and Morgan, B. J. T. (2007), “Population Growth in Snow Geese: A Modeling Approach Integrating Demographic and Survey Information,” Ecology, 88 (6), 1420–1429.CrossRefGoogle Scholar
  21. Gelman, A. (2006), “Prior Distributions for Variance Parameters in Hierarchical Models,” Bayesian Analysis, 1 (3), 515–534.MathSciNetGoogle Scholar
  22. Gelman, A., and Rubin, D. B. (1992), “Inference From Interative Simulation Using Multiple Sequences,” Statistical Science, 7 (4), 457–472.CrossRefGoogle Scholar
  23. Gelman, A., Roberts, G. O., and Gilks, W. R. (1996), “Efficient Metropolis Jumping Rules,” in Bayesian Statistics 5, eds. J. M. Bernado, J. O. Berger, A. P. Dawid, and A. F. M. Smith, New York: Oxford University Press. pp. 599–608.Google Scholar
  24. Goodman, D. (2004), “Methods for Joint Inference From Multiple Data Sources for Improved Estimates of Population Size and Survival Rates,” Marine Mammal Science, 20 (3), 401–423.CrossRefGoogle Scholar
  25. Halley, D. J., and Harris, M. P. (1993), “Intercolony Movement and Behaviour of Immature Guillemots Uria aalge,” Ibis, 135 (3), 264–270.CrossRefGoogle Scholar
  26. Halley, D. J., Harris, M. P., and Wanless, S. (1995), “Colony Attendance Patterns and Recruitment in Immature Common Murres (Uria aalge),” The Auk, 112 (4), 947–957.Google Scholar
  27. Harris, M. P. (1989), “Variation in the Correction Factor Used for Converting Counts of Individual Guillemots Uria aalge Into Breeding Paris,” Ibis, 131 (1), 85–93.CrossRefGoogle Scholar
  28. Harris, M. P., and Wanless, S. (1995), “Survival and Non-Breeding of Adult Common Guillemots Uria aalge,” Ibis, 137 (2), 192–197.CrossRefGoogle Scholar
  29. — (2004), “Common Guillemot Uria aalge,” in Seabird Populations of Britain and Ireland: Results of the Seabird 2000 Census (1998–2003), eds. P. I. Mitchell, S. F. Newton, N. Ratcliffe, and T. E. Dunn, London: T & A. D. Poyser, pp. 350–363.Google Scholar
  30. Harris, M. P., Frederiksen, M., and Wanless, S. (2007), “Within- and Between-Year Variation in the Juvenile Survival of Common Guillemots Uria aalge,” Ibis, 149 (3), 472–481.CrossRefGoogle Scholar
  31. Harris, M. P., Halley, D. J., and Swann, R. L. (1994), “Age of First Breeding in Common Murres,” The Auk, 111 (1), 207–209.Google Scholar
  32. Harris, M. P., Halley, D. J., and Wanless, S. (1996a), “Philopatry in the Common Guillemot Uria aalge,” Bird Study, 43 (2), 134–137.CrossRefGoogle Scholar
  33. Harris, M. P., Wanless, S., and Barton, T. R. (1996b), “Site Use and Fidelity in the Common Guillemot Uria aalge,” Ibis, 138 (3), 399–404.CrossRefGoogle Scholar
  34. Harris, M. P., Wanless, S., Rothery, P., Swann, R. L., and Jardine, D. (2000), “Survival of Adult Common Guillemots Uria aalge at Three Scottish Colonies,” Bird Study, 47 (1), 1–7.CrossRefGoogle Scholar
  35. Hilborn, R., and Mangel, M. (1997), The Ecological Detective, Princeton: Princeton University Press.Google Scholar
  36. Jamieson, L. E., and Brooks, S. P. (2004), “Density Dependence in North American Ducks,” Animal Biodiversity and Conservation, 27 (1), 113–128.Google Scholar
  37. King, R., and Brooks, S. P. (2002), “Model Selection for Integrated Recovery/Recapture Data,” Biometrics, 58 (4), 841–851.CrossRefMathSciNetGoogle Scholar
  38. King, R., Brooks, S. P., Mazzetta, C., Freeman, S. N., and Morgan, B. J. T. (2008), “Identifying and Diagnosing Population Declines: A Bayesian Assessment of Lapwings in the UK,” Journal of the Royal Statistical Society, Ser. C, 57 (5), 609–632.CrossRefMathSciNetGoogle Scholar
  39. MacArthur, R. H., and Wilson, E. O. (1967), The Theory of Island Biogeography, Princeton: Princeton University Press.Google Scholar
  40. Millar, R. B., and Meyer, R. (2000), “Non-Linear State Space Modelling of Fisheries Biomass Dynamics by Using Metropolis Hastings Within-Gibbs Sampling,” Journal of the Royal Statistical Society, Ser. C, 49 (3), 327–342.MATHCrossRefMathSciNetGoogle Scholar
  41. Peach, W. J., Siriwardena, G. M., and Gregory, R. D. (1999), “Long-Term Changes in Over-Winter Survival Rates Explain the Decline of Reed Buntings Emberiza schoeniclus in Britain,” Journal of Applied Ecology, 36 (5), 798–811.CrossRefGoogle Scholar
  42. Robinson, R. A., Green, R. E., Baillie, S. R., Peach, W. J., and Thomson, D. L. (2004), “Demographic Mechanisms of the Population Decline of the Song Thrush Turdus philomelos in Britain,” Journal of Animal Ecology, 73 (4), 670–682.CrossRefGoogle Scholar
  43. Schaub, M., Gimenez, O., Sierro, A., and Arlettaz, R. (2007), “Use of Integrated Modeling to Enhance Estimates of Population Dynamics Obtained From Limited Data,” Conservation Biology, 21 (4), 945–955.CrossRefGoogle Scholar
  44. Spiegelhalter, D. J., Thomas, A., Best, N. C., and Lunn, D. (2007), WinBUGS User Manual, Version 1.4.3, Cambridge: MRC Biostatistics Unit.Google Scholar
  45. Véran, S., and Lebreton, J.-D. (2008), “The Potential of Integrated Modelling in Conservation Biology: A Case Study of the Black-Footed Albatross (Phoebastria nigripes),” The Canadian Journal of Statistics, 36 (1), 85–98.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© International Biometric Society 2009

Authors and Affiliations

  • Toby J. Reynolds
    • 1
  • Ruth King
    • 1
  • John Harwood
    • 1
  • Morten Frederiksen
    • 2
  • Michael P. Harris
    • 3
  • Sarah Wanless
    • 1
  1. 1.Centre for Research into Ecological and Environmental ModellingUniversity of St. AndrewsSt. AndrewsU.K.
  2. 2.National Environmental Research Institute, Department of Arctic EnvironmentUniversity of AarhusRoskildeDenmark
  3. 3.Centre for Ecology and HydrologyMidlothianU.K.

Personalised recommendations